2.1352 ODE No. 1352
\[ y''(x)=-\frac {2 (a+x) y'(x)}{x^2}-\frac {b y(x)}{x^4} \]
✓ Mathematica : cpu = 0.0094925 (sec), leaf count = 89
DSolve[Derivative[2][y][x] == -((b*y[x])/x^4) - (2*(a + x)*Derivative[1][y][x])/x^2,y[x],x]
\[\left \{\left \{y(x)\to c_1 e^{-\frac {\sqrt {b} \left (-\frac {\sqrt {a^2-b}}{\sqrt {b}}-\frac {a}{\sqrt {b}}\right )}{x}}+c_2 e^{-\frac {\sqrt {b} \left (\frac {\sqrt {a^2-b}}{\sqrt {b}}-\frac {a}{\sqrt {b}}\right )}{x}}\right \}\right \}\]
✓ Maple : cpu = 0.059 (sec), leaf count = 43
dsolve(diff(diff(y(x),x),x) = -2/x^2*(x+a)*diff(y(x),x)-b/x^4*y(x),y(x))
\[y \left (x \right ) = c_{1} {\mathrm e}^{\frac {a -\sqrt {a^{2}-b}}{x}}+c_{2} {\mathrm e}^{\frac {a +\sqrt {a^{2}-b}}{x}}\]