2.134 ODE No. 134
\[ x^2 y'(x)+e^{x-\frac {1}{x}} x^2-y(x)=0 \]
✓ Mathematica : cpu = 0.0502948 (sec), leaf count = 27
DSolve[E^(-x^(-1) + x)*x^2 - y[x] + x^2*Derivative[1][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to -e^{x-\frac {1}{x}}+c_1 e^{-1/x}\right \}\right \}\]
✓ Maple : cpu = 0.008 (sec), leaf count = 17
dsolve(x^2*diff(y(x),x)-y(x)+x^2*exp(x-1/x) = 0,y(x))
\[y \left (x \right ) = \left (-{\mathrm e}^{x}+c_{1} \right ) {\mathrm e}^{-\frac {1}{x}}\]