2.1339 ODE No. 1339
\[ y''(x)=-\frac {y'(x) \left (a (b+2) x^2+x (c-d+1)\right )}{x^2 (a x+1)}-\frac {y(x) (a b x-c d)}{x^2 (a x+1)} \]
✓ Mathematica : cpu = 0.152277 (sec), leaf count = 66
DSolve[Derivative[2][y][x] == -(((-(c*d) + a*b*x)*y[x])/(x^2*(1 + a*x))) - (((1 + c - d)*x + a*(2 + b)*x^2)*Derivative[1][y][x])/(x^2*(1 + a*x)),y[x],x]
\[\left \{\left \{y(x)\to c_1 a^{-c} x^{-c} \, _2F_1(1-c,b-c;-c-d+1;-a x)+c_2 a^d x^d \, _2F_1(d+1,b+d;c+d+1;-a x)\right \}\right \}\]
✓ Maple : cpu = 0.187 (sec), leaf count = 76
dsolve(diff(diff(y(x),x),x) = -(a*(b+2)*x^2+(c-d+1)*x)/(a*x+1)/x^2*diff(y(x),x)-(a*b*x-c*d)/(a*x+1)/x^2*y(x),y(x))
\[y \left (x \right ) = \left (a x +1\right )^{-b +c -d} \left (\operatorname {hypergeom}\left (\left [-d , 1-b -d \right ], \left [1-c -d \right ], -a x \right ) x^{-c} c_{2} +\operatorname {hypergeom}\left (\left [c , 1-b +c \right ], \left [1+c +d \right ], -a x \right ) x^{d} c_{1} \right )\]