2.1315   ODE No. 1315

\[ a x^3 y(x)+\left (x^2-1\right ) x y''(x)+y'(x)=0 \]

Mathematica : cpu = 0.0160359 (sec), leaf count = 44

DSolve[a*x^3*y[x] + Derivative[1][y][x] + x*(-1 + x^2)*Derivative[2][y][x] == 0,y[x],x]
 
\[\left \{\left \{y(x)\to c_1 \cos \left (\sqrt {a} \sqrt {x^2-1}\right )+c_2 \sin \left (\sqrt {a} \sqrt {x^2-1}\right )\right \}\right \}\]

Maple : cpu = 0.044 (sec), leaf count = 45

dsolve(x*(x^2-1)*diff(diff(y(x),x),x)+diff(y(x),x)+y(x)*a*x^3=0,y(x))
 
\[y \left (x \right ) = c_{1} \sin \left (\frac {\left (x -1\right ) \left (1+x \right ) \sqrt {a}}{\sqrt {x^{2}-1}}\right )+c_{2} \cos \left (\frac {\left (x -1\right ) \left (1+x \right ) \sqrt {a}}{\sqrt {x^{2}-1}}\right )\]