2.1303 ODE No. 1303
\[ y''(x) \left (a x^2+b x+c\right )+(d x+f) y'(x)+g y(x)=0 \]
✓ Mathematica : cpu = 3.45118 (sec), leaf count = 498
DSolve[g*y[x] + (f + d*x)*Derivative[1][y][x] + (c + b*x + a*x^2)*Derivative[2][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to c_1 \, _2F_1\left (-\frac {a-d+\sqrt {(a-d)^2-4 a g}}{2 a},\frac {-a+d+\sqrt {(a-d)^2-4 a g}}{2 a};\frac {\left (b+\sqrt {b^2-4 a c}\right ) d-2 a f}{2 a \sqrt {b^2-4 a c}};\frac {b+2 a x+\sqrt {b^2-4 a c}}{2 \sqrt {b^2-4 a c}}\right )-c_2 2^{\frac {\frac {b d}{\sqrt {b^2-4 a c}}+d}{2 a}-\frac {f}{\sqrt {b^2-4 a c}}-1} \exp \left (-\frac {i \pi \left (d \left (\sqrt {b^2-4 a c}+b\right )-2 a f\right )}{2 a \sqrt {b^2-4 a c}}\right ) \left (\frac {\sqrt {b^2-4 a c}+2 a x+b}{\sqrt {b^2-4 a c}}\right )^{-\frac {\frac {b d}{\sqrt {b^2-4 a c}}+d}{2 a}+\frac {f}{\sqrt {b^2-4 a c}}+1} \, _2F_1\left (\frac {\frac {2 f a}{\sqrt {b^2-4 a c}}+a-\frac {b d}{\sqrt {b^2-4 a c}}-\sqrt {(a-d)^2-4 a g}}{2 a},\frac {\frac {2 f a}{\sqrt {b^2-4 a c}}+a-\frac {b d}{\sqrt {b^2-4 a c}}+\sqrt {(a-d)^2-4 a g}}{2 a};-\frac {\frac {b d}{\sqrt {b^2-4 a c}}+d+a \left (-\frac {2 f}{\sqrt {b^2-4 a c}}-4\right )}{2 a};\frac {b+2 a x+\sqrt {b^2-4 a c}}{2 \sqrt {b^2-4 a c}}\right )\right \}\right \}\]
✓ Maple : cpu = 0.314 (sec), leaf count = 501
dsolve((a*x^2+b*x+c)*diff(diff(y(x),x),x)+(d*x+f)*diff(y(x),x)+g*y(x)=0,y(x))
\[y \left (x \right ) = c_{1} \operatorname {hypergeom}\left (\left [\frac {-a +d +\sqrt {a^{2}+\left (-2 d -4 g \right ) a +d^{2}}}{2 a}, -\frac {a -d +\sqrt {a^{2}+\left (-2 d -4 g \right ) a +d^{2}}}{2 a}\right ], \left [\frac {d \sqrt {\frac {-4 c a +b^{2}}{a^{2}}}\, a -2 a f +b d}{2 a^{2} \sqrt {\frac {-4 c a +b^{2}}{a^{2}}}}\right ], \frac {\left (-2 a^{2} x -a b \right ) \sqrt {\frac {-4 c a +b^{2}}{a^{2}}}+4 c a -b^{2}}{8 c a -2 b^{2}}\right )+c_{2} {\left (2 \sqrt {\frac {-4 c a +b^{2}}{a^{2}}}\, x \,a^{2}+\sqrt {\frac {-4 c a +b^{2}}{a^{2}}}\, b a -4 c a +b^{2}\right )}^{\frac {a \left (a -\frac {d}{2}\right ) \sqrt {\frac {-4 c a +b^{2}}{a^{2}}}+a f -\frac {b d}{2}}{\sqrt {\frac {-4 c a +b^{2}}{a^{2}}}\, a^{2}}} \operatorname {hypergeom}\left (\left [\frac {a \left (a -\sqrt {a^{2}+\left (-2 d -4 g \right ) a +d^{2}}\right ) \sqrt {\frac {-4 c a +b^{2}}{a^{2}}}+2 a f -b d}{2 \sqrt {\frac {-4 c a +b^{2}}{a^{2}}}\, a^{2}}, \frac {a \left (a +\sqrt {a^{2}+\left (-2 d -4 g \right ) a +d^{2}}\right ) \sqrt {\frac {-4 c a +b^{2}}{a^{2}}}+2 a f -b d}{2 \sqrt {\frac {-4 c a +b^{2}}{a^{2}}}\, a^{2}}\right ], \left [\frac {4 a^{2} \sqrt {\frac {-4 c a +b^{2}}{a^{2}}}-d \sqrt {\frac {-4 c a +b^{2}}{a^{2}}}\, a +2 a f -b d}{2 a^{2} \sqrt {\frac {-4 c a +b^{2}}{a^{2}}}}\right ], \frac {\left (-2 a^{2} x -a b \right ) \sqrt {\frac {-4 c a +b^{2}}{a^{2}}}+4 c a -b^{2}}{8 c a -2 b^{2}}\right )\]