2.1298   ODE No. 1298

\[ \left (a x^2+1\right ) y''(x)+b x y'(x)+c y(x)=0 \]

Mathematica : cpu = 0.0330778 (sec), leaf count = 162

DSolve[c*y[x] + b*x*Derivative[1][y][x] + (1 + a*x^2)*Derivative[2][y][x] == 0,y[x],x]
 
\[\left \{\left \{y(x)\to c_1 \left (a x^2+1\right )^{\frac {2 a-b}{4 a}} P_{\frac {\sqrt {a^2-2 b a-4 c a+b^2}-a}{2 a}}^{\frac {b-2 a}{2 a}}\left (i \sqrt {a} x\right )+c_2 \left (a x^2+1\right )^{\frac {2 a-b}{4 a}} Q_{\frac {\sqrt {a^2-2 b a-4 c a+b^2}-a}{2 a}}^{\frac {b-2 a}{2 a}}\left (i \sqrt {a} x\right )\right \}\right \}\]

Maple : cpu = 0.191 (sec), leaf count = 124

dsolve((a*x^2+1)*diff(diff(y(x),x),x)+b*x*diff(y(x),x)+y(x)*c=0,y(x))
 
\[y \left (x \right ) = \left (a \,x^{2}+1\right )^{\frac {2 a -b}{4 a}} \left (\operatorname {LegendreP}\left (\frac {\sqrt {a^{2}+\left (-2 b -4 c \right ) a +b^{2}}-a}{2 a}, \frac {2 a -b}{2 a}, x \sqrt {-a}\right ) c_{1} +\operatorname {LegendreQ}\left (\frac {\sqrt {a^{2}+\left (-2 b -4 c \right ) a +b^{2}}-a}{2 a}, \frac {2 a -b}{2 a}, x \sqrt {-a}\right ) c_{2} \right )\]