2.1294   ODE No. 1294

\[ 144 (x-1) x y''(x)+(168 x-96) y'(x)+y(x)=0 \]

Mathematica : cpu = 0.041801 (sec), leaf count = 44

DSolve[y[x] + (-96 + 168*x)*Derivative[1][y][x] + 144*(-1 + x)*x*Derivative[2][y][x] == 0,y[x],x]
 
\[\left \{\left \{y(x)\to c_1 \, _2F_1\left (\frac {1}{12},\frac {1}{12};\frac {2}{3};x\right )+\sqrt [3]{-1} c_2 \sqrt [3]{x} \, _2F_1\left (\frac {5}{12},\frac {5}{12};\frac {4}{3};x\right )\right \}\right \}\]

Maple : cpu = 0.096 (sec), leaf count = 33

dsolve(144*x*(x-1)*diff(diff(y(x),x),x)+(168*x-96)*diff(y(x),x)+y(x)=0,y(x))
 
\[y \left (x \right ) = x^{{1}/{6}} \left (\operatorname {LegendreQ}\left (-\frac {1}{2}, \frac {1}{3}, \sqrt {1-x}\right ) c_{2} +\operatorname {LegendreP}\left (-\frac {1}{2}, \frac {1}{3}, \sqrt {1-x}\right ) c_{1} \right )\]