2.1279   ODE No. 1279

\[ 4 x^2 y''(x)+5 x y'(x)-y(x)-\log (x)=0 \]

Mathematica : cpu = 0.0719384 (sec), leaf count = 74

DSolve[-Log[x] - y[x] + 5*x*Derivative[1][y][x] + 4*x^2*Derivative[2][y][x] == 0,y[x],x]
 
\[\left \{\left \{y(x)\to c_2 x^{\frac {1}{2} \left (\frac {\sqrt {17}}{4}-\frac {1}{4}\right )}+c_1 x^{\frac {1}{2} \left (-\frac {1}{4}-\frac {\sqrt {17}}{4}\right )}-\frac {256 (\log (x)+1)}{\left (\sqrt {17}-1\right )^2 \left (1+\sqrt {17}\right )^2}\right \}\right \}\]

Maple : cpu = 0.197 (sec), leaf count = 32

dsolve(4*x^2*diff(diff(y(x),x),x)+5*x*diff(y(x),x)-y(x)-ln(x)=0,y(x))
 
\[y \left (x \right ) = x^{-\frac {1}{8}+\frac {\sqrt {17}}{8}} c_{2} +x^{-\frac {1}{8}-\frac {\sqrt {17}}{8}} c_{1} -\ln \left (x \right )-1\]