2.1259 ODE No. 1259
\[ ((a+1) x+b) y'(x)-l y(x)+(x-1) x y''(x)=0 \]
✓ Mathematica : cpu = 0.0728294 (sec), leaf count = 120
DSolve[-(l*y[x]) + (b + (1 + a)*x)*Derivative[1][y][x] + (-1 + x)*x*Derivative[2][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to (-1)^{b+1} c_2 x^{b+1} \, _2F_1\left (\frac {a}{2}+b-\frac {1}{2} \sqrt {a^2+4 l}+1,\frac {a}{2}+b+\frac {1}{2} \sqrt {a^2+4 l}+1;b+2;x\right )+c_1 \, _2F_1\left (\frac {a}{2}-\frac {1}{2} \sqrt {a^2+4 l},\frac {a}{2}+\frac {1}{2} \sqrt {a^2+4 l};-b;x\right )\right \}\right \}\]
✓ Maple : cpu = 0.092 (sec), leaf count = 92
dsolve(x*(x-1)*diff(diff(y(x),x),x)+((a+1)*x+b)*diff(y(x),x)-l*y(x)=0,y(x))
\[y \left (x \right ) = c_{1} \operatorname {hypergeom}\left (\left [\frac {a}{2}-\frac {\sqrt {a^{2}+4 l}}{2}, \frac {a}{2}+\frac {\sqrt {a^{2}+4 l}}{2}\right ], \left [-b \right ], x\right )+c_{2} x^{1+b} \operatorname {hypergeom}\left (\left [\frac {a}{2}-\frac {\sqrt {a^{2}+4 l}}{2}+b +1, \frac {a}{2}+\frac {\sqrt {a^{2}+4 l}}{2}+b +1\right ], \left [b +2\right ], x\right )\]