2.1254 ODE No. 1254
\[ \left (x^2+x-2\right ) y''(x)+\left (x^2-x\right ) y'(x)+\left (-6 x^2-7 x\right ) y(x)=0 \]
✓ Mathematica : cpu = 0.400577 (sec), leaf count = 69
DSolve[(-7*x - 6*x^2)*y[x] + (-x + x^2)*Derivative[1][y][x] + (-2 + x + x^2)*Derivative[2][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to \frac {1}{5} c_2 e^{-3 x-5} \left (195 e^{5 x} x \text {Ei}(5-5 x)-195 e^{5 x} \text {Ei}(5-5 x)+e^5 x+44 e^5\right )-c_1 e^{2 x} (x-1)\right \}\right \}\]
✓ Maple : cpu = 0.088 (sec), leaf count = 43
dsolve((x^2+x-2)*diff(diff(y(x),x),x)+(x^2-x)*diff(y(x),x)-(6*x^2+7*x)*y(x)=0,y(x))
\[y \left (x \right ) = 195 \,{\mathrm e}^{-5+2 x} c_{2} \left (x -1\right ) \operatorname {Ei}_{1}\left (5 x -5\right )-c_{2} \left (x +44\right ) {\mathrm e}^{-3 x}+c_{1} {\mathrm e}^{2 x} \left (x -1\right )\]