2.1236 ODE No. 1236
\[ f(x) y(x)+\left (x^2-1\right ) y''(x)+x y'(x)=0 \]
✗ Mathematica : cpu = 0.18824 (sec), leaf count = 0
DSolve[f[x]*y[x] + x*Derivative[1][y][x] + (-1 + x^2)*Derivative[2][y][x] == 0,y[x],x]
, could not solve
DSolve[f[x]*y[x] + x*Derivative[1][y][x] + (-1 + x^2)*Derivative[2][y][x] == 0, y[x], x]
✗ Maple : cpu = 0. (sec), leaf count = 0
dsolve((x^2-1)*diff(diff(y(x),x),x)+x*diff(y(x),x)+f(x)*y(x)=0,y(x))
, result contains DESol or ODESolStruc
\[y \left (x \right ) = \operatorname {DESol}\left (\left \{\frac {f \left (x \right ) \textit {\_Y} \left (x \right )}{x^{2}-1}+\frac {x \left (\frac {d}{d x}\textit {\_Y} \left (x \right )\right )}{x^{2}-1}+\frac {d^{2}}{d x^{2}}\textit {\_Y} \left (x \right )\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )\]