2.1221   ODE No. 1221

\[ y(x) \left (x^2 \left (-f'(x)+f(x)^2+1\right )-x f(x)-v^2\right )+\left (x-2 x^2 f(x)\right ) y'(x)+x^2 y''(x)=0 \]

Mathematica : cpu = 0.01879 (sec), leaf count = 42

DSolve[y[x]*(-v^2 - x*f[x] + x^2*(1 + f[x]^2 - Derivative[1][f][x])) + (x - 2*x^2*f[x])*Derivative[1][y][x] + x^2*Derivative[2][y][x] == 0,y[x],x]
 
\[\left \{\left \{y(x)\to c_1 J_v(x) \exp \left (\int _1^xf(K[1])dK[1]\right )+c_2 Y_v(x) \exp \left (\int _1^xf(K[1])dK[1]\right )\right \}\right \}\]

Maple : cpu = 0.044 (sec), leaf count = 35

dsolve(x^2*diff(diff(y(x),x),x)+(x-2*x^2*f(x))*diff(y(x),x)+(x^2*(1+f(x)^2-diff(f(x),x))-x*f(x)-v^2)*y(x)=0,y(x))
 
\[y \left (x \right ) = {\mathrm e}^{-\frac {\left (\int \frac {-2 x f \left (x \right )+1}{x}d x \right )}{2}} \sqrt {x}\, \left (\operatorname {BesselY}\left (v , x\right ) c_{2} +\operatorname {BesselJ}\left (v , x\right ) c_{1} \right )\]