2.1215 ODE No. 1215
\[ x y'(x) \left (a x^n+b\right )+y(x) \left (\text {a1} x^{2 n}+\text {b1} x^n+\text {c1}\right )+x^2 y''(x)=0 \]
✓ Mathematica : cpu = 0.341876 (sec), leaf count = 674
DSolve[(c1 + b1*x^n + a1*x^(2*n))*y[x] + x*(b + a*x^n)*Derivative[1][y][x] + x^2*Derivative[2][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to c_1 x^{\frac {1-n}{2}} 2^{\frac {\sqrt {b^2 n^2-2 b n^2-4 \text {c1} n^2+n^2}+n^2}{2 n^2}} \left (x^n\right )^{\frac {\sqrt {b^2 n^2-2 b n^2-4 \text {c1} n^2+n^2}+n^2}{2 n^2}} \exp \left (\frac {1}{2} \left (-\frac {a x^n}{n}-\frac {b \log \left (x^n\right )}{n}\right )-\frac {\sqrt {a^2-4 \text {a1}} x^n}{2 n}\right ) U\left (\frac {\frac {\sqrt {\left (b^2-2 b-4 \text {c1}+1\right ) n^2} a^2}{n^2}+a^2+\sqrt {a^2-4 \text {a1}} a+\frac {\sqrt {a^2-4 \text {a1}} b a}{n}-\frac {\sqrt {a^2-4 \text {a1}} a}{n}-4 \text {a1}-\frac {4 \text {a1} \sqrt {\left (b^2-2 b-4 \text {c1}+1\right ) n^2}}{n^2}-\frac {2 \sqrt {a^2-4 \text {a1}} \text {b1}}{n}}{2 \left (a^2-4 \text {a1}\right )},\frac {n^2+\sqrt {b^2 n^2-2 b n^2-4 \text {c1} n^2+n^2}}{n^2},\frac {\sqrt {a^2-4 \text {a1}} x^n}{n}\right )+c_2 x^{\frac {1-n}{2}} 2^{\frac {\sqrt {b^2 n^2-2 b n^2-4 \text {c1} n^2+n^2}+n^2}{2 n^2}} \left (x^n\right )^{\frac {\sqrt {b^2 n^2-2 b n^2-4 \text {c1} n^2+n^2}+n^2}{2 n^2}} \exp \left (\frac {1}{2} \left (-\frac {a x^n}{n}-\frac {b \log \left (x^n\right )}{n}\right )-\frac {\sqrt {a^2-4 \text {a1}} x^n}{2 n}\right ) L_{-\frac {\frac {\sqrt {\left (b^2-2 b-4 \text {c1}+1\right ) n^2} a^2}{n^2}+a^2+\sqrt {a^2-4 \text {a1}} a+\frac {\sqrt {a^2-4 \text {a1}} b a}{n}-\frac {\sqrt {a^2-4 \text {a1}} a}{n}-4 \text {a1}-\frac {4 \text {a1} \sqrt {\left (b^2-2 b-4 \text {c1}+1\right ) n^2}}{n^2}-\frac {2 \sqrt {a^2-4 \text {a1}} \text {b1}}{n}}{2 \left (a^2-4 \text {a1}\right )}}^{\frac {n^2+\sqrt {b^2 n^2-2 b n^2-4 \text {c1} n^2+n^2}}{n^2}-1}\left (\frac {\sqrt {a^2-4 \text {a1}} x^n}{n}\right )\right \}\right \}\]
✓ Maple : cpu = 0.301 (sec), leaf count = 148
dsolve(x^2*diff(diff(y(x),x),x)+(a*x^n+b)*diff(y(x),x)*x+(a1*x^(2*n)+b1*x^n+c1)*y(x)=0,y(x))
\[y \left (x \right ) = x^{-\frac {b}{2}-\frac {n}{2}+\frac {1}{2}} {\mathrm e}^{-\frac {a \,x^{n}}{2 n}} \left (\operatorname {WhittakerM}\left (-\frac {\left (b +n -1\right ) a -2 \operatorname {b1}}{2 \sqrt {a^{2}-4 \operatorname {a1}}\, n}, \frac {\sqrt {b^{2}-2 b -4 \operatorname {c1} +1}}{2 n}, \frac {\sqrt {a^{2}-4 \operatorname {a1}}\, x^{n}}{n}\right ) c_{1} +\operatorname {WhittakerW}\left (-\frac {\left (b +n -1\right ) a -2 \operatorname {b1}}{2 \sqrt {a^{2}-4 \operatorname {a1}}\, n}, \frac {\sqrt {b^{2}-2 b -4 \operatorname {c1} +1}}{2 n}, \frac {\sqrt {a^{2}-4 \operatorname {a1}}\, x^{n}}{n}\right ) c_{2} \right )\]