2.1212 ODE No. 1212
\[ x \left (a x^2+b\right ) y'(x)+f(x) y(x)+x^2 y''(x)=0 \]
✗ Mathematica : cpu = 0.191481 (sec), leaf count = 0
DSolve[f[x]*y[x] + x*(b + a*x^2)*Derivative[1][y][x] + x^2*Derivative[2][y][x] == 0,y[x],x]
, could not solve
DSolve[f[x]*y[x] + x*(b + a*x^2)*Derivative[1][y][x] + x^2*Derivative[2][y][x] == 0, y[x], x]
✗ Maple : cpu = 0. (sec), leaf count = 0
dsolve(x^2*diff(diff(y(x),x),x)+(a*x^2+b)*x*diff(y(x),x)+f(x)*y(x)=0,y(x))
, result contains DESol or ODESolStruc
\[y \left (x \right ) = \operatorname {DESol}\left (\left \{\frac {f \left (x \right ) \textit {\_Y} \left (x \right )}{x^{2}}+\frac {\left (a \,x^{2}+b \right ) \left (\frac {d}{d x}\textit {\_Y} \left (x \right )\right )}{x}+\frac {d^{2}}{d x^{2}}\textit {\_Y} \left (x \right )\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )\]