2.1209 ODE No. 1209
\[ x^2 y''(x)+\left (x^2+2\right ) x y'(x)+\left (x^2-2\right ) y(x)=0 \]
✓ Mathematica : cpu = 0.0274555 (sec), leaf count = 67
DSolve[(-2 + x^2)*y[x] + x*(2 + x^2)*Derivative[1][y][x] + x^2*Derivative[2][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to \frac {c_1 e^{-\frac {x^2}{2}} \left (e^{\frac {x^2}{2}} x-\sqrt {\frac {\pi }{2}} \text {erfi}\left (\frac {x}{\sqrt {2}}\right )\right )}{x^2}+\frac {c_2 e^{-\frac {x^2}{2}}}{x^2}\right \}\right \}\]
✓ Maple : cpu = 0.073 (sec), leaf count = 40
dsolve(x^2*diff(diff(y(x),x),x)+(x^2+2)*x*diff(y(x),x)+(x^2-2)*y(x)=0,y(x))
\[y \left (x \right ) = \frac {\left (i \sqrt {\pi }\, \sqrt {2}\, \operatorname {erf}\left (\frac {i \sqrt {2}\, x}{2}\right ) c_{2} +c_{1} \right ) {\mathrm e}^{-\frac {x^{2}}{2}}+2 c_{2} x}{x^{2}}\]