2.1204   ODE No. 1204

\[ x^2 (a+2 b) y'(x)+y(x) \left (b x^2 (a+b)-2\right )+x^2 y''(x)=0 \]

Mathematica : cpu = 0.013646 (sec), leaf count = 132

DSolve[(-2 + b*(a + b)*x^2)*y[x] + (a + 2*b)*x^2*Derivative[1][y][x] + x^2*Derivative[2][y][x] == 0,y[x],x]
 
\[\left \{\left \{y(x)\to \frac {2 c_2 e^{\frac {1}{2} (-a x-2 b x+\log (x))} \left (i \sinh \left (\frac {a x}{2}\right )-\frac {2 i \cosh \left (\frac {a x}{2}\right )}{a x}\right )}{\sqrt {\pi } \sqrt {-i a x}}+\frac {2 c_1 e^{\frac {1}{2} (-a x-2 b x+\log (x))} \left (\frac {2 \sinh \left (\frac {a x}{2}\right )}{a x}-\cosh \left (\frac {a x}{2}\right )\right )}{\sqrt {\pi } \sqrt {-i a x}}\right \}\right \}\]

Maple : cpu = 0.059 (sec), leaf count = 35

dsolve(x^2*diff(diff(y(x),x),x)+(a+2*b)*x^2*diff(y(x),x)+((a+b)*b*x^2-2)*y(x)=0,y(x))
 
\[y \left (x \right ) = \frac {c_{2} \left (a x +2\right ) {\mathrm e}^{-\left (a +b \right ) x}+c_{1} {\mathrm e}^{-b x} \left (a x -2\right )}{x}\]