2.1198   ODE No. 1198

\[ x^2 y''(x)-\left (x^2-2 x\right ) y'(x)+(-3 x-2) y(x)=0 \]

Mathematica : cpu = 0.0443572 (sec), leaf count = 41

DSolve[(-2 - 3*x)*y[x] - (-2*x + x^2)*Derivative[1][y][x] + x^2*Derivative[2][y][x] == 0,y[x],x]
 
\[\left \{\left \{y(x)\to c_1 e^x x-\frac {c_2 \left (e^x x^3 \text {Ei}(-x)+x^2-x+2\right )}{6 x^2}\right \}\right \}\]

Maple : cpu = 0.051 (sec), leaf count = 37

dsolve(x^2*diff(diff(y(x),x),x)-(x^2-2*x)*diff(y(x),x)-(3*x+2)*y(x)=0,y(x))
 
\[y \left (x \right ) = \frac {\operatorname {Ei}_{1}\left (x \right ) {\mathrm e}^{x} c_{2} x^{3}+c_{1} x^{3} {\mathrm e}^{x}-c_{2} \left (x^{2}-x +2\right )}{x^{2}}\]