2.1186 ODE No. 1186
\[ x^3 (-\sin (x))+x^2 y''(x)-5 x y'(x)+8 y(x)=0 \]
✓ Mathematica : cpu = 0.0109348 (sec), leaf count = 42
DSolve[-(x^3*Sin[x]) + 8*y[x] - 5*x*Derivative[1][y][x] + x^2*Derivative[2][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to \frac {1}{2} \left (x^4 \text {Ci}(x)-x^3 \sin (x)+x^2 \cos (x)\right )+c_2 x^4+c_1 x^2\right \}\right \}\]
✓ Maple : cpu = 0.068 (sec), leaf count = 32
dsolve(x^2*diff(diff(y(x),x),x)-5*x*diff(y(x),x)+8*y(x)-sin(x)*x^3=0,y(x))
\[y \left (x \right ) = \frac {x^{2} \left (2 c_{1} x^{2}+\operatorname {Ci}\left (x \right ) x^{2}-x \sin \left (x \right )+2 c_{2} +\cos \left (x \right )\right )}{2}\]