2.1178 ODE No. 1178
\[ x^3 (-\sec (x))+x^2 y''(x)+\left (x^2+2\right ) y(x)-2 x y'(x)=0 \]
✓ Mathematica : cpu = 0.0271565 (sec), leaf count = 74
DSolve[-(x^3*Sec[x]) + (2 + x^2)*y[x] - 2*x*Derivative[1][y][x] + x^2*Derivative[2][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to \frac {1}{2} e^{-i x} x \left (e^{2 i x} \log \left (1+e^{-2 i x}\right )+\log \left (1+e^{2 i x}\right )\right )+c_1 e^{-i x} x-\frac {1}{2} i c_2 e^{i x} x\right \}\right \}\]
✓ Maple : cpu = 0.069 (sec), leaf count = 23
dsolve(x^2*diff(diff(y(x),x),x)-2*x*diff(y(x),x)+(x^2+2)*y(x)-x^3/cos(x)=0,y(x))
\[y \left (x \right ) = \left (\cos \left (x \right ) \ln \left (\cos \left (x \right )\right )+\cos \left (x \right ) c_{1} +\sin \left (x \right ) \left (x +c_{2} \right )\right ) x\]