2.1167   ODE No. 1167

\[ y(x) \left (a x^m+b\right )+x^2 y''(x)-x y'(x)=0 \]

Mathematica : cpu = 0.0377506 (sec), leaf count = 326

DSolve[(b + a*x^m)*y[x] - x*Derivative[1][y][x] + x^2*Derivative[2][y][x] == 0,y[x],x]
 
\[\left \{\left \{y(x)\to c_1 m^{-\frac {2 \left (m-i \sqrt {b-1} m\right )}{m^2}-\frac {2 i \sqrt {b-1}}{m}} a^{\frac {m-i \sqrt {b-1} m}{m^2}+\frac {i \sqrt {b-1}}{m}} \left (x^m\right )^{\frac {m-i \sqrt {b-1} m}{m^2}+\frac {i \sqrt {b-1}}{m}} \Gamma \left (1-\frac {2 i \sqrt {b-1}}{m}\right ) J_{-\frac {2 i \sqrt {b-1}}{m}}\left (\frac {2 \sqrt {a} \sqrt {x^m}}{m}\right )+c_2 m^{\frac {2 i \sqrt {b-1}}{m}-\frac {2 \left (m+i \sqrt {b-1} m\right )}{m^2}} a^{\frac {m+i \sqrt {b-1} m}{m^2}-\frac {i \sqrt {b-1}}{m}} \left (x^m\right )^{\frac {m+i \sqrt {b-1} m}{m^2}-\frac {i \sqrt {b-1}}{m}} \Gamma \left (\frac {2 i \sqrt {b-1}}{m}+1\right ) J_{\frac {2 i \sqrt {b-1}}{m}}\left (\frac {2 \sqrt {a} \sqrt {x^m}}{m}\right )\right \}\right \}\]

Maple : cpu = 0.054 (sec), leaf count = 63

dsolve(x^2*diff(diff(y(x),x),x)-x*diff(y(x),x)+(a*x^m+b)*y(x)=0,y(x))
 
\[y \left (x \right ) = x \left (\operatorname {BesselY}\left (\frac {2 \sqrt {1-b}}{m}, \frac {2 \sqrt {a}\, x^{\frac {m}{2}}}{m}\right ) c_{2} +\operatorname {BesselJ}\left (\frac {2 \sqrt {1-b}}{m}, \frac {2 \sqrt {a}\, x^{\frac {m}{2}}}{m}\right ) c_{1} \right )\]