2.1157   ODE No. 1157

\[ a y'(x)+x^2 y''(x)-x y(x)=0 \]

Mathematica : cpu = 0.259068 (sec), leaf count = 0

DSolve[-(x*y[x]) + a*Derivative[1][y][x] + x^2*Derivative[2][y][x] == 0,y[x],x]
 

, DifferentialRoot result

\[\left \{\left \{y(x)\to (x)\right \}\right \}\]

Maple : cpu = 0. (sec), leaf count = 0

dsolve(x^2*diff(diff(y(x),x),x)+a*diff(y(x),x)-x*y(x)=0,y(x))
 

, result contains DESol or ODESolStruc

\[y \left (x \right ) = \operatorname {DESol}\left (\left \{\frac {d^{2}}{d x^{2}}\textit {\_Y} \left (x \right )+\frac {a \left (\frac {d}{d x}\textit {\_Y} \left (x \right )\right )}{x^{2}}-\frac {\textit {\_Y} \left (x \right )}{x}\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )\]