2.1125   ODE No. 1125

\[ -4 x^5-4 x^3 y(x)+\left (4 x^2-1\right ) y'(x)+x y''(x)=0 \]

Mathematica : cpu = 0.171783 (sec), leaf count = 84

DSolve[-4*x^5 - 4*x^3*y[x] + (-1 + 4*x^2)*Derivative[1][y][x] + x*Derivative[2][y][x] == 0,y[x],x]
 
\[\left \{\left \{y(x)\to -\frac {3 \sqrt {2} x^2+4 x^2+6 \sqrt {2}+8}{\sqrt {2} \left (3+2 \sqrt {2}\right )}+c_1 e^{-\left (\left (1-\sqrt {2}\right ) x^2\right )}+c_2 e^{-\left (\left (1+\sqrt {2}\right ) x^2\right )}\right \}\right \}\]

Maple : cpu = 0.063 (sec), leaf count = 36

dsolve(x*diff(diff(y(x),x),x)+(4*x^2-1)*diff(y(x),x)-4*x^3*y(x)-4*x^5=0,y(x))
 
\[y \left (x \right ) = {\mathrm e}^{x^{2} \left (\sqrt {2}-1\right )} c_{2} +{\mathrm e}^{-x^{2} \left (1+\sqrt {2}\right )} c_{1} -x^{2}-2\]