2.1120 ODE No. 1120
\[ (a x+b) y'(x)+y(x) (c x+d)+x y''(x)=0 \]
✓ Mathematica : cpu = 0.0264337 (sec), leaf count = 168
DSolve[(d + c*x)*y[x] + (b + a*x)*Derivative[1][y][x] + x*Derivative[2][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to c_1 e^{-\frac {1}{2} x \sqrt {a^2-4 c}-\frac {a x}{2}} U\left (-\frac {-a b-\sqrt {a^2-4 c} b+2 d}{2 \sqrt {a^2-4 c}},b,\sqrt {a^2-4 c} x\right )+c_2 e^{-\frac {1}{2} x \sqrt {a^2-4 c}-\frac {a x}{2}} L_{\frac {-a b-\sqrt {a^2-4 c} b+2 d}{2 \sqrt {a^2-4 c}}}^{b-1}\left (\sqrt {a^2-4 c} x\right )\right \}\right \}\]
✓ Maple : cpu = 0.399 (sec), leaf count = 109
dsolve(x*diff(diff(y(x),x),x)+(a*x+b)*diff(y(x),x)+(c*x+d)*y(x)=0,y(x))
\[y \left (x \right ) = {\mathrm e}^{-\frac {x \left (\sqrt {a^{2}-4 c}+a \right )}{2}} \left (\operatorname {KummerU}\left (\frac {b \sqrt {a^{2}-4 c}+a b -2 d}{2 \sqrt {a^{2}-4 c}}, b , \sqrt {a^{2}-4 c}\, x \right ) c_{2} +\operatorname {KummerM}\left (\frac {b \sqrt {a^{2}-4 c}+a b -2 d}{2 \sqrt {a^{2}-4 c}}, b , \sqrt {a^{2}-4 c}\, x \right ) c_{1} \right )\]