2.112 ODE No. 112
\[ -\sqrt {x^2+y(x)^2}+x y'(x)-y(x)=0 \]
✓ Mathematica : cpu = 0.102146 (sec), leaf count = 58
DSolve[-y[x] - Sqrt[x^2 + y[x]^2] + x*Derivative[1][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to -\frac {x \tanh (\log (x)+c_1)}{\sqrt {1-\tanh ^2(\log (x)+c_1)}}\right \},\left \{y(x)\to \frac {x \tanh (\log (x)+c_1)}{\sqrt {1-\tanh ^2(\log (x)+c_1)}}\right \}\right \}\]
✓ Maple : cpu = 0.069 (sec), leaf count = 27
dsolve(x*diff(y(x),x)-(y(x)^2+x^2)^(1/2)-y(x) = 0,y(x))
\[\frac {\sqrt {y \left (x \right )^{2}+x^{2}}}{x^{2}}+\frac {y \left (x \right )}{x^{2}}-c_{1} = 0\]
Hand solution
\[ xy^{\prime }=\sqrt {x^{2}+y^{2}}+y \]
Let \(y=xv\), then \(y^{\prime }=v+xv^{\prime }\) and the above becomes
\begin{align*} x\left ( v+xv^{\prime }\right ) & =\sqrt {x^{2}+\left ( xv\right ) ^{2}}+xv\\ x\left ( v+xv^{\prime }\right ) & =x\sqrt {1+v^{2}}+xv\\ \left ( v+xv^{\prime }\right ) & =\sqrt {1+v^{2}}+v\\ xv^{\prime } & =\sqrt {1+v^{2}}\end{align*}
Separable.
\[ \frac {dv}{\sqrt {1+v^{2}}}=\frac {1}{x}dx \]
Integrating
\begin{align*} \operatorname {arcsinh}\left ( v\right ) & =\ln x+C\\ v & =\sinh \left ( \ln x+C\right ) \end{align*}
Since \(y=xv\) then
\[ y=x\sinh \left ( \ln x+C\right ) \]
Verification
ode:=x*diff(y(x),x)=sqrt(x^2+y(x)^2)+y(x);
y0:=x*sinh(ln(x)+_C1);
odetest(y(x)=y0,ode) assuming x>= 0;
0