2.1117 ODE No. 1117
\[ -(x+1) (a+b) y'(x)+a b x y(x)+x y''(x)=0 \]
✓ Mathematica : cpu = 0.0419112 (sec), leaf count = 107
DSolve[a*b*x*y[x] - (a + b)*(1 + x)*Derivative[1][y][x] + x*Derivative[2][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to c_1 U\left (-\frac {-a^2-b a-a+b}{a-b},a+b+2,(a-b) x\right ) e^{(a+b+1) \log (x)+b x}+c_2 L_{\frac {-a^2-b a-a+b}{a-b}}^{a+b+1}((a-b) x) e^{(a+b+1) \log (x)+b x}\right \}\right \}\]
✓ Maple : cpu = 0.221 (sec), leaf count = 82
dsolve(x*diff(diff(y(x),x),x)-(a+b)*(1+x)*diff(y(x),x)+a*b*x*y(x)=0,y(x))
\[y \left (x \right ) = {\mathrm e}^{b x} x^{a +b +1} \left (\operatorname {KummerU}\left (\frac {a^{2}+a b +a -b}{a -b}, 2+a +b , x \left (a -b \right )\right ) c_{2} +\operatorname {KummerM}\left (\frac {a^{2}+a b +a -b}{a -b}, 2+a +b , x \left (a -b \right )\right ) c_{1} \right )\]