2.108   ODE No. 108

\[ x y'(x)+y(x)+y(x)^2 (-\log (x))=0 \]

Mathematica : cpu = 0.0611016 (sec), leaf count = 15

DSolve[y[x] - Log[x]*y[x]^2 + x*Derivative[1][y][x] == 0,y[x],x]
 
\[\left \{\left \{y(x)\to \frac {1}{\log (x)+c_1 x+1}\right \}\right \}\]

Maple : cpu = 0.018 (sec), leaf count = 13

dsolve(x*diff(y(x),x)-y(x)^2*ln(x)+y(x) = 0,y(x))
 
\[y \left (x \right ) = \frac {1}{1+x c_{1} +\ln \left (x \right )}\]

Hand solution

\(xy^{\prime }+axy^{2}+2y+bx=0\)This is Riccati non-linear first order. Converting it to standard form

\begin{align} xy^{\prime }-y^{2}\ln x+y & =0\tag {1}\\ y^{\prime } & =-\frac {1}{x}y+y^{2}\frac {\ln x}{x}\nonumber \\ & =f_{0}+f_{1}y+f_{2}y^{2}\nonumber \end{align}

This is Bernoulli non-linear first order ODE since \(f_{0}=0\). Dividing by \(y^{2}\) gives

\[ \frac {y^{\prime }}{y^{2}}=-\frac {1}{x}\frac {1}{y}+\frac {\ln x}{x}\]

Let \(u=\frac {1}{y}\), hence \(u^{\prime }=-\frac {y^{\prime }}{y^{2}}\), and the above becomes

\begin{align*} -u^{\prime } & =-\frac {1}{x}u+\frac {\ln x}{x}\\ u^{\prime }-\frac {1}{x}u & =-\frac {\ln x}{x}\end{align*}

Integrating factor is \(\mu =e^{\int -\frac {1}{x}dx}=e^{-\ln x}=\frac {1}{x}\), hence

\[ d\left ( \mu u\right ) =-\mu \frac {\ln x}{x}\]

Integrating

\begin{align*} \frac {1}{x}u & =-\int \frac {1}{x^{2}}\ln xdx+C\\ & =-\left ( -\frac {\ln x}{x}-\frac {1}{x}\right ) +C \end{align*}

Therefore

\[ u=\ln x+1+Cx \]

Since \(u=\frac {1}{y}\) then

\[ y=\frac {1}{\ln x+1+Cx}\]

Verification

restart; 
ode:=x*diff(y(x),x)-y(x)^2*ln(x)+y(x)=0; 
my_solution:=1/(ln(x)+1+_C1*x); 
odetest(y(x)=my_solution,ode); 
0