2.1057 ODE No. 1057
\[ x^2 \left (-y'(x)\right )+y''(x)-(x+1)^2 y(x)=0 \]
✓ Mathematica : cpu = 0.117418 (sec), leaf count = 56
DSolve[-((1 + x)^2*y[x]) - x^2*Derivative[1][y][x] + Derivative[2][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to c_2 e^{\frac {x^3}{3}+x} \int _1^xe^{-\frac {1}{3} K[1]^3-2 K[1]}dK[1]+c_1 e^{\frac {x^3}{3}+x}\right \}\right \}\]
✓ Maple : cpu = 0.201 (sec), leaf count = 50
dsolve(diff(diff(y(x),x),x)-x^2*diff(y(x),x)-(1+x)^2*y(x)=0,y(x))
\[y \left (x \right ) = c_{1} \operatorname {HeunT}\left (0, -3, 2 \,3^{{1}/{3}}, \frac {3^{{2}/{3}} x}{3}\right ) {\mathrm e}^{-x}+c_{2} \operatorname {HeunT}\left (0, 3, 2 \,3^{{1}/{3}}, -\frac {3^{{2}/{3}} x}{3}\right ) {\mathrm e}^{\frac {x \left (x^{2}+3\right )}{3}}\]