2.1048   ODE No. 1048

\[ \left (2 n+3 x^2-1\right ) y(x)+y''(x)-4 x y'(x)=0 \]

Mathematica : cpu = 0.0068826 (sec), leaf count = 45

DSolve[(-1 + 2*n + 3*x^2)*y[x] - 4*x*Derivative[1][y][x] + Derivative[2][y][x] == 0,y[x],x]
 
\[\left \{\left \{y(x)\to c_1 e^{\frac {x^2}{2}} H_n(x)+c_2 e^{\frac {x^2}{2}} \, _1F_1\left (-\frac {n}{2};\frac {1}{2};x^2\right )\right \}\right \}\]

Maple : cpu = 0.121 (sec), leaf count = 37

dsolve(diff(diff(y(x),x),x)-4*x*diff(y(x),x)+(3*x^2+2*n-1)*y(x)=0,y(x))
 
\[y \left (x \right ) = {\mathrm e}^{\frac {x^{2}}{2}} x \left (\operatorname {KummerU}\left (-\frac {n}{2}+\frac {1}{2}, \frac {3}{2}, x^{2}\right ) c_{2} +\operatorname {KummerM}\left (-\frac {n}{2}+\frac {1}{2}, \frac {3}{2}, x^{2}\right ) c_{1} \right )\]