2.1045   ODE No. 1045

\[ y''(x)-x y'(x)+(x-1) y(x)=0 \]

Mathematica : cpu = 0.0260477 (sec), leaf count = 39

DSolve[(-1 + x)*y[x] - x*Derivative[1][y][x] + Derivative[2][y][x] == 0,y[x],x]
 
\[\left \{\left \{y(x)\to \sqrt {\frac {\pi }{2}} c_2 e^{x-2} \text {erfi}\left (\frac {x-2}{\sqrt {2}}\right )+c_1 e^x\right \}\right \}\]

Maple : cpu = 0.02 (sec), leaf count = 21

dsolve(diff(diff(y(x),x),x)-x*diff(y(x),x)+(x-1)*y(x)=0,y(x))
 
\[y \left (x \right ) = {\mathrm e}^{x} \left (\operatorname {erf}\left (\frac {i \sqrt {2}\, \left (x -2\right )}{2}\right ) c_{1} +c_{2} \right )\]