2.1043 ODE No. 1043
\[ y''(x)-x y'(x)+2 y(x)=0 \]
✓ Mathematica : cpu = 0.140662 (sec), leaf count = 69
DSolve[2*y[x] - x*Derivative[1][y][x] + Derivative[2][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to \frac {1}{4} c_2 \left (\sqrt {2 \pi } x^2 \text {erfi}\left (\frac {x}{\sqrt {2}}\right )-\sqrt {2 \pi } \text {erfi}\left (\frac {x}{\sqrt {2}}\right )-2 e^{\frac {x^2}{2}} x\right )+c_1 \left (x^2-1\right )\right \}\right \}\]
✓ Maple : cpu = 0.39 (sec), leaf count = 39
dsolve(diff(diff(y(x),x),x)-x*diff(y(x),x)+2*y(x)=0,y(x))
\[y \left (x \right ) = -2 \,{\mathrm e}^{\frac {x^{2}}{2}} c_{1} x +\left (x -1\right ) \left (1+x \right ) \left (\sqrt {2}\, \sqrt {\pi }\, \operatorname {erfi}\left (\frac {x \sqrt {2}}{2}\right ) c_{1} +c_{2} \right )\]
Hand solution
\begin{equation} y^{\prime \prime }-xy^{\prime }+2y=0\tag {1}\end{equation}
Second order with varying coefficient. Using power series, let \(y=\sum _{n=0}^{\infty }c_{n}x^{n}\), hence
\begin{align*} y^{\prime } & =\sum _{n=0}^{\infty }nc_{n}x^{n-1}=\sum _{n=1}^{\infty }nc_{n}x^{n-1}=\sum _{n=0}^{\infty }\left ( n+1\right ) c_{n+1}x^{n}\\ y^{\prime \prime } & =\sum _{n=0}^{\infty }n\left ( n+1\right ) c_{n+1}x^{n-1}=\sum _{n=1}^{\infty }n\left ( n+1\right ) c_{n+1}x^{n-1}=\sum _{n=0}^{\infty }\left ( n+1\right ) \left ( n+2\right ) c_{n+2}x^{n}\end{align*}
Substituting back in the original ODE gives
\begin{align*} \sum _{n=0}^{\infty }\left ( n+1\right ) \left ( n+2\right ) c_{n+2}x^{n}-x\sum _{n=0}^{\infty }\left ( n+1\right ) c_{n+1}x^{n}+2\sum _{n=0}^{\infty }c_{n}x^{n} & =0\\ \sum _{n=0}^{\infty }\left ( n+1\right ) \left ( n+2\right ) c_{n+2}x^{n}-\sum _{n=0}^{\infty }\left ( n+1\right ) c_{n+1}x^{n+1}+\sum _{n=0}^{\infty }2c_{n}x^{n} & =0\\ \sum _{n=0}^{\infty }\left ( n+1\right ) \left ( n+2\right ) c_{n+2}x^{n}-\sum _{n=1}^{\infty }nc_{n}x^{n}+\sum _{n=0}^{\infty }2c_{n}x^{n} & =0 \end{align*}
For \(n=0\)
\begin{align*} \left ( n+1\right ) \left ( n+2\right ) c_{n+2}+2c_{n} & =0\\ \left ( 1\right ) \left ( 2\right ) c_{2}+2c_{0} & =0\\ c_{2} & =-c_{0}\end{align*}
For \(n\geq 1\)
\begin{align*} \left ( n+1\right ) \left ( n+2\right ) c_{n+2}-nc_{n}+2c_{n} & =0\\ c_{n+2} & =\frac {c_{n}\left ( n-2\right ) }{\left ( n+1\right ) \left ( n+2\right ) }\end{align*}
Hence for \(n=1\)
\[ c_{3}=\frac {-c_{1}}{\left ( 2\right ) \left ( 3\right ) }\]
For \(n=2\)
\[ c_{4}=\frac {c_{2}\left ( 2-2\right ) }{\left ( 3\right ) \left ( 4\right ) }=0 \]
For \(n=3\)
\[ c_{5}=\frac {c_{3}}{\left ( 4\right ) \left ( 5\right ) }=\frac {-c_{1}}{\left ( 2\right ) \left ( 3\right ) \left ( 4\right ) \left ( 5\right ) }\]
For \(n=4\) and since \(c_{4}=0\) then
\[ c_{6}=\frac {c_{4}\left ( n-2\right ) }{\left ( n+1\right ) \left ( n+2\right ) }=0 \]
For \(n=5\)
\[ c_{7}=\frac {3c_{5}}{\left ( 6\right ) \left ( 7\right ) }=-\frac {3c_{1}}{\left ( 2\right ) \left ( 3\right ) \left ( 4\right ) \left ( 5\right ) \left ( 6\right ) \left ( 7\right ) }\]
For \(n=6\) and since \(c_{6}=0\) then
\[ c_{8}=\frac {c_{6}\left ( n-2\right ) }{\left ( n+1\right ) \left ( n+2\right ) }=0 \]
For \(n=7\)
\[ c_{9}=\frac {5c_{7}}{\left ( 8\right ) \left ( 9\right ) }=-\frac {\left ( 3\right ) \left ( 5\right ) c_{1}}{\left ( 2\right ) \left ( 3\right ) \left ( 4\right ) \left ( 5\right ) \left ( 6\right ) \left ( 7\right ) \left ( 8\right ) \left ( 9\right ) }\]
And so on.
Hence
\begin{align*} y & =\sum _{n=0}^{\infty }c_{n}x^{n}\\ & =c_{0}+c_{1}x+c_{2}x^{2}+c_{3}x^{3}+\cdots \\ & =c_{0}+c_{1}x-c_{0}x^{2}-\frac {c_{1}}{\left ( 2\right ) \left ( 3\right ) }x^{3}-\frac {c_{1}}{\left ( 2\right ) \left ( 3\right ) \left ( 4\right ) \left ( 5\right ) }x^{5}-\frac {3c_{1}}{\left ( 2\right ) \left ( 3\right ) \left ( 4\right ) \left ( 5\right ) \left ( 6\right ) \left ( 7\right ) }x^{7}-\frac {\left ( 3\right ) \left ( 5\right ) c_{1}}{\left ( 2\right ) \left ( 3\right ) \left ( 4\right ) \left ( 5\right ) \left ( 6\right ) \left ( 7\right ) \left ( 8\right ) \left ( 9\right ) }x^{9}-\cdots \\ & =c_{0}\left ( 1-x^{2}\right ) +c_{1}\left ( x-\frac {1}{\left ( 2\right ) \left ( 3\right ) }x^{3}-\frac {1}{\left ( 2\right ) \left ( 3\right ) \left ( 4\right ) \left ( 5\right ) }x^{5}-\frac {3}{\left ( 2\right ) \left ( 3\right ) \left ( 4\right ) \left ( 5\right ) \left ( 6\right ) \left ( 7\right ) }x^{7}-\frac {\left ( 3\right ) \left ( 5\right ) }{\left ( 2\right ) \left ( 3\right ) \left ( 4\right ) \left ( 5\right ) \left ( 6\right ) \left ( 7\right ) \left ( 8\right ) \left ( 9\right ) }x^{9}\right ) \\ & =c_{0}\left ( 1-x^{2}\right ) +c_{1}\left ( x-\frac {1}{3!}x^{3}-\frac {1}{5!}x^{5}-\frac {3}{7!}x^{7}-\frac {15}{9!}x^{9}-\cdots \right ) \end{align*}
Hence
\[ y\left ( x\right ) =c_{0}\left ( 1-x^{2}\right ) +c_{1}\left ( x-\frac {1}{6}x^{3}-\frac {1}{120}x^{5}-\frac {1}{1680}x^{7}-\frac {1}{24\,192}x^{9}-\cdots \right ) \]
Verification
restart;
Order:=10:
sol:=dsolve(ode,y(x),series):
subs({y(0)=c0,D(y)(0)=c1},rhs(sol)):
sol:=convert(%,polynom):
sol:=collect(sol,{c0,c1});
sol := (-x^2+1)*c0+(x-(1/6)*x^3-(1/120)*x^5-(1/1680)*x^7-(1/24192)*x^9)*c1