2.1002 ODE No. 1002
\[ y''(x)+y(x)=0 \]
✓ Mathematica : cpu = 0.0039151 (sec), leaf count = 16
DSolve[y[x] + Derivative[2][y][x] == 0,y[x],x]
\[\{\{y(x)\to c_1 \cos (x)+c_2 \sin (x)\}\}\]
✓ Maple : cpu = 0.005 (sec), leaf count = 13
dsolve(diff(diff(y(x),x),x)+y(x)=0,y(x))
\[y \left (x \right ) = \sin \left (x \right ) c_{1} +c_{2} \cos \left (x \right )\]
Hand solution
\[ y^{\prime \prime }+y=0 \]
Let \(y=e^{\lambda x}\), substitution in above gives
\begin{align*} \lambda ^{2}e^{\lambda x}+e^{\lambda x} & =0\\ \lambda ^{2}+1 & =0 \end{align*}
Hence \(\lambda =\pm i\), therefore the solution is
\begin{align*} y & =Ae^{ix}+Be^{-ix}\\ & =A\left ( \cos x+i\sin x\right ) +B\left ( \cos x-i\sin x\right ) \\ & =\cos x\left ( A+B\right ) +\sin x\left ( Ai-iB\right ) \\ & =\cos x\left ( A+B\right ) +\sin x\left ( i\left ( A-B\right ) \right ) \end{align*}
Let \(A+B=c_{1},i\left ( A-B\right ) =c_{2}\) hence
\[ y=c_{1}\cos x+c_{2}\sin x \]