\[ \frac {y'(x) \left (-\wp (x;a,b) \wp '(x;a,b)+\wp (x;a,b)^3-6 \wp (x;a,b)^2+\frac {a}{2}\right )}{\wp '(x;a,b)-\wp (x;a,b)^2}+\frac {y(x) \left (\wp (x;a,b)^2 (-\wp '(x;a,b))-\left (6 \wp (x;a,b)^2-\frac {a}{2}\right ) \wp (x;a,b)+\wp '(x;a,b)^2\right )}{\wp (x;a,b)^2+\wp '(x;a,b)}+y''(x)=0 \] ✗ Mathematica : cpu = 1.1033 (sec), leaf count = 0 , could not solve
DSolve[((-(WeierstrassP[x, {a, b}]*(-a/2 + 6*WeierstrassP[x, {a, b}]^2)) - WeierstrassP[x, {a, b}]^2*WeierstrassPPrime[x, {a, b}] + WeierstrassPPrime[x, {a, b}]^2)*y[x])/(WeierstrassP[x, {a, b}]^2 + WeierstrassPPrime[x, {a, b}]) + ((a/2 - 6*WeierstrassP[x, {a, b}]^2 + WeierstrassP[x, {a, b}]^3 - WeierstrassP[x, {a, b}]*WeierstrassPPrime[x, {a, b}])*Derivative[1][y][x])/(-WeierstrassP[x, {a, b}]^2 + WeierstrassPPrime[x, {a, b}]) + Derivative[2][y][x] == 0, y[x], x]
✗ Maple : cpu = 0. (sec), leaf count = 0 , result contains DESol
\[ \left \{ y \left ( x \right ) ={\it DESol} \left ( \left \{ {\frac {{\rm d}^{2}}{{\rm d}{x}^{2}}}{\it \_Y} \left ( x \right ) +{\frac {{\frac {\rm d}{{\rm d}x}}{\it \_Y} \left ( x \right ) }{{\it WeierstrassPPrime} \left ( x,a,b \right ) + \left ( {\it WeierstrassP} \left ( x,a,b \right ) \right ) ^{2}} \left ( 11\,{\it WeierstrassP} \left ( x,a,b \right ) {\it WeierstrassPPrime} \left ( x,a,b \right ) -6\, \left ( {\it WeierstrassP} \left ( x,a,b \right ) \right ) ^{2}+{\frac {a}{2}} \right ) }+{\frac {{\it \_Y} \left ( x \right ) }{{\it WeierstrassPPrime} \left ( x,a,b \right ) + \left ( {\it WeierstrassP} \left ( x,a,b \right ) \right ) ^{2}} \left ( \left ( {\it WeierstrassPPrime} \left ( x,a,b \right ) \right ) ^{2}- \left ( {\it WeierstrassP} \left ( x,a,b \right ) \right ) ^{2}{\it WeierstrassPPrime} \left ( x,a,b \right ) -{\it WeierstrassP} \left ( x,a,b \right ) \left ( 6\, \left ( {\it WeierstrassP} \left ( x,a,b \right ) \right ) ^{2}-{\frac {a}{2}} \right ) \right ) } \right \} , \left \{ {\it \_Y} \left ( x \right ) \right \} \right ) \right \} \]