\[ y'(x)=\frac {x^6+3 x^5 y(x)+3 x^4 y(x)^2+x^4+x^3 y(x)^3+2 x^3 y(x)+x^2 y(x)^2-y(x)-2 x+1}{x} \] ✓ Mathematica : cpu = 0.237156 (sec), leaf count = 98
\[\text {Solve}\left [-\frac {29}{3} \text {RootSum}\left [-29 \text {$\#$1}^3+3 \sqrt [3]{29} \text {$\#$1}-29\& ,\frac {\log \left (\frac {3 x^3+3 x^2 y(x)+x}{\sqrt [3]{29} \sqrt [3]{x^3}}-\text {$\#$1}\right )}{\sqrt [3]{29}-29 \text {$\#$1}^2}\& \right ]=\frac {29^{2/3} \left (x^3\right )^{2/3}}{9 x}+c_1,y(x)\right ]\] ✓ Maple : cpu = 0.029 (sec), leaf count = 42
\[\left \{y \left (x \right ) = \frac {-9 x^{2}+29 \RootOf \left (3 c_{1}+x -81 \left (\int _{}^{\textit {\_Z}}\frac {1}{841 \textit {\_a}^{3}-27 \textit {\_a} +27}d \textit {\_a} \right )\right )-3}{9 x}\right \}\]