\[ y'(x)=\frac {x^4 y(x)^3-5 x^3 y(x)^2+6 x^2 y(x)-2 x y(x)-2 x+1}{x^2 \left (x^2 y(x)-x+1\right )} \] ✓ Mathematica : cpu = 0.196148 (sec), leaf count = 78
\[\left \{\left \{y(x)\to \frac {x-1}{x^2}+\frac {1}{x^4 \left (\frac {1}{x^2}-\frac {1}{x^2 \sqrt {\frac {2}{x}+c_1}}\right )}\right \},\left \{y(x)\to \frac {x-1}{x^2}+\frac {1}{x^4 \left (\frac {1}{x^2}+\frac {1}{x^2 \sqrt {\frac {2}{x}+c_1}}\right )}\right \}\right \}\] ✓ Maple : cpu = 0.059 (sec), leaf count = 79
\[\left \{y \left (x \right ) = \frac {\sqrt {\frac {c_{1} x +2}{x}}\, x -x +1}{\left (\sqrt {\frac {c_{1} x +2}{x}}-1\right ) x^{2}}, y \left (x \right ) = \frac {\sqrt {\frac {c_{1} x +2}{x}}\, x +x -1}{\left (\sqrt {\frac {c_{1} x +2}{x}}+1\right ) x^{2}}\right \}\]