\[ \left \{a x'(t)+b y'(t)=\alpha x(t)+\beta y(t),b x'(t)-a y'(t)=\beta x(t)-\alpha y(t)\right \} \] ✓ Mathematica : cpu = 0.0105553 (sec), leaf count = 183
\[\left \{\left \{x(t)\to c_1 e^{\frac {t (a \alpha +b \beta )}{a^2+b^2}} \cos \left (\frac {t (a \beta -\alpha b)}{a^2+b^2}\right )+c_2 e^{\frac {t (a \alpha +b \beta )}{a^2+b^2}} \sin \left (\frac {t (a \beta -\alpha b)}{a^2+b^2}\right ),y(t)\to c_2 e^{\frac {t (a \alpha +b \beta )}{a^2+b^2}} \cos \left (\frac {t (a \beta -\alpha b)}{a^2+b^2}\right )-c_1 e^{\frac {t (a \alpha +b \beta )}{a^2+b^2}} \sin \left (\frac {t (a \beta -\alpha b)}{a^2+b^2}\right )\right \}\right \}\] ✓ Maple : cpu = 0.113 (sec), leaf count = 152
\[\left \{\left \{x \left (t \right ) = c_{1} {\mathrm e}^{\frac {\left (\left (i \beta +\alpha \right ) a -\left (i \alpha -\beta \right ) b \right ) t}{a^{2}+b^{2}}}+c_{2} {\mathrm e}^{-\frac {\left (\left (i \beta -\alpha \right ) a -\left (i \alpha +\beta \right ) b \right ) t}{a^{2}+b^{2}}}, y \left (t \right ) = i \left (c_{1} {\mathrm e}^{\frac {\left (\left (i \beta +\alpha \right ) a -\left (i \alpha -\beta \right ) b \right ) t}{a^{2}+b^{2}}}-c_{2} {\mathrm e}^{-\frac {\left (\left (i \beta -\alpha \right ) a -\left (i \alpha +\beta \right ) b \right ) t}{a^{2}+b^{2}}}\right )\right \}\right \}\]