\[ 2 y(x) y''(x)-y'(x)^2-8 y(x)^3=0 \] ✓ Mathematica : cpu = 0.9652 (sec), leaf count = 135
\[\left \{\left \{y(x)\to \text {InverseFunction}\left [-\frac {2 \sqrt {\text {$\#$1}} \sqrt {1+\frac {4 \text {$\#$1}^2}{c_1}} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};-\frac {4 \text {$\#$1}^2}{c_1}\right )}{\sqrt {4 \text {$\#$1}^2+c_1}}\& \right ][x+c_2]\right \},\left \{y(x)\to \text {InverseFunction}\left [\frac {2 \sqrt {\text {$\#$1}} \sqrt {1+\frac {4 \text {$\#$1}^2}{c_1}} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};-\frac {4 \text {$\#$1}^2}{c_1}\right )}{\sqrt {4 \text {$\#$1}^2+c_1}}\& \right ][x+c_2]\right \}\right \}\] ✓ Maple : cpu = 1.29 (sec), leaf count = 53
\[\left \{-c_{2}-x +\int _{}^{y \left (x \right )}\frac {1}{\sqrt {4 \textit {\_a}^{3}+c_{1} \textit {\_a}}}d \textit {\_a} = 0, -c_{2}-x +\int _{}^{y \left (x \right )}-\frac {1}{\sqrt {4 \textit {\_a}^{3}+c_{1} \textit {\_a}}}d \textit {\_a} = 0\right \}\]