ODE No. 919

\[ y'(x)=\frac {\left (-y(x)+\sqrt {y(x)}+x\right ) y(x)^{3/2}}{x^3-3 x^2 y(x)+3 x y(x)^2+x y(x)^{3/2}-y(x)^3-y(x)^{5/2}+y(x)^2} \] Mathematica : cpu = 0.302682 (sec), leaf count = 251

DSolve[Derivative[1][y][x] == ((x + Sqrt[y[x]] - y[x])*y[x]^(3/2))/(x^3 - 3*x^2*y[x] + x*y[x]^(3/2) + y[x]^2 + 3*x*y[x]^2 - y[x]^(5/2) - y[x]^3),y[x],x]
 

\[\left \{\left \{y(x)\to \text {Root}\left [\text {$\#$1}^9 c_1{}^4-6 \text {$\#$1}^8 c_1{}^4 x+\text {$\#$1}^7 \left (15 c_1{}^4 x^2-6 c_1{}^2\right )+\text {$\#$1}^6 \left (-20 c_1{}^4 x^3+30 c_1{}^2 x-4+2 c_1{}^2\right )+\text {$\#$1}^5 \left (15 c_1{}^4 x^4-60 c_1{}^2 x^2+24 x-6 c_1{}^2 x+9\right )+\text {$\#$1}^4 \left (-6 c_1{}^4 x^5+60 c_1{}^2 x^3-60 x^2+6 c_1{}^2 x^2-36 x-6\right )+\text {$\#$1}^3 \left (c_1{}^4 x^6-30 c_1{}^2 x^4+80 x^3-2 c_1{}^2 x^3+54 x^2+12 x+1\right )+\text {$\#$1}^2 \left (6 c_1{}^2 x^5-60 x^4-36 x^3-6 x^2\right )+\text {$\#$1} \left (24 x^5+9 x^4\right )-4 x^6\& ,1\right ]\right \}\right \}\] Maple : cpu = 0.195 (sec), leaf count = 82

dsolve(diff(y(x),x) = y(x)^(3/2)*(x-y(x)+y(x)^(1/2))/(y(x)^(3/2)*x-y(x)^(5/2)+y(x)^2+x^3-3*x^2*y(x)+3*x*y(x)^2-y(x)^3),y(x))
 

\[-\frac {\left (x^{3} c_{1}-6 x -1\right ) y \left (x \right )^{\frac {5}{2}}+\left (-3 x^{2} c_{1}+3\right ) y \left (x \right )^{\frac {7}{2}}-y \left (x \right )^{\frac {11}{2}} c_{1}+3 y \left (x \right )^{\frac {3}{2}} x^{2}+3 y \left (x \right )^{\frac {9}{2}} c_{1} x -2 y \left (x \right ) \left (x -y \left (x \right )\right )^{3}}{y \left (x \right )^{\frac {5}{2}} \left (x -y \left (x \right )\right )^{3}} = 0\]