\[ y'(x)=\frac {4 x^6 y(x)^3+2 x^5 y(x)+3 x^4 y(x)^2+\frac {3}{4} x^2 y(x)+2 x^5+\frac {x^3}{2}+\frac {1}{16}}{x^6 \left (4 x^2 y(x)+4 x^2+1\right )} \] ✓ Mathematica : cpu = 0.17968 (sec), leaf count = 106
\[\left \{\left \{y(x)\to -\frac {4 x^2+1}{4 x^2}+\frac {1}{64 x^8 \left (\frac {1}{64 x^8}-\frac {1}{x^8 \sqrt {\frac {8192}{x}+c_1}}\right )}\right \},\left \{y(x)\to -\frac {4 x^2+1}{4 x^2}+\frac {1}{64 x^8 \left (\frac {1}{64 x^8}+\frac {1}{x^8 \sqrt {\frac {8192}{x}+c_1}}\right )}\right \}\right \}\] ✓ Maple : cpu = 0.125 (sec), leaf count = 87
\[ \left \{ y \left ( x \right ) ={\frac {1}{4\,{x}^{2}} \left ( -4\,{x}^{2}-\sqrt {{\frac {{\it \_C1}\,x+2}{x}}}-1 \right ) \left ( \sqrt {{\frac {{\it \_C1}\,x+2}{x}}}+1 \right ) ^{-1}},y \left ( x \right ) ={\frac {1}{4\,{x}^{2}} \left ( 4\,{x}^{2}-\sqrt {{\frac {{\it \_C1}\,x+2}{x}}}+1 \right ) \left ( \sqrt {{\frac {{\it \_C1}\,x+2}{x}}}-1 \right ) ^{-1}} \right \} \]