\[ y'(x)=\frac {-3 x^4 y(x)+3 x^2 y(x)^2+x^6+2 x^3-2 x y(x)-y(x)^3-2 x}{x^2-y(x)-1} \] ✓ Mathematica : cpu = 0.159018 (sec), leaf count = 49
\[\left \{\left \{y(x)\to x^2+\frac {1}{1-\frac {1}{\sqrt {-2 x+c_1}}}-1\right \},\left \{y(x)\to x^2+\frac {1}{1+\frac {1}{\sqrt {-2 x+c_1}}}-1\right \}\right \}\] ✓ Maple : cpu = 0.114 (sec), leaf count = 73
\[ \left \{ y \left ( x \right ) ={\frac {1}{-2\,{\it \_C1}+2\,x} \left ( -2\,{\it \_C1}\,{x}^{2}+2\,{x}^{3}+\sqrt {2\,{\it \_C1}-2\,x+1}-1 \right ) },y \left ( x \right ) ={\frac {1}{-2\,x+2\,{\it \_C1}} \left ( 2\,{\it \_C1}\,{x}^{2}-2\,{x}^{3}+\sqrt {2\,{\it \_C1}-2\,x+1}+1 \right ) } \right \} \]