6.10 Example 11. \(xy^{\prime }+y=\frac {1}{x^{3}}\)
\begin{equation} xy^{\prime }+y=x^{-3}\tag {1}\end{equation}
This is same as example 1, but with nonzero on RHS. The solution is \(y=y_{h}+y_{p}\). Where \(y_{h}\) was found above as
\[ y_{h}=\frac {a_{0}}{x}\]
To find \(y_{p}\) we assume it has power series
\[ y_{p}=\sum _{n=0}^{\infty }c_{n}x^{n+r}\]
Substituting the above into the ode and simplifying as we did in first example gives EQ. 3 in the first example, but now with \(x^{-3}\) on RHS
\begin{equation} \sum _{n=0}^{\infty }\left ( n+r\right ) c_{n}x^{n+r}+\sum _{n=0}^{\infty }c_{n}x^{n+r}=x^{-3}\tag {3A}\end{equation}
For \(n=0\)
\begin{align*} rc_{0}x^{r}+c_{0}x^{r} & =x^{-3}\\ \left ( r+1\right ) c_{0}x^{r} & =x^{-3}\end{align*}
For balance \(r=-3\). And \(\left ( r+1\right ) c_{0}=1\) or \(c_{0}=-\frac {1}{2}\). Hence (3A) becomes
\begin{equation} \sum _{n=0}^{\infty }\left ( n-3\right ) c_{n}x^{n-3}+\sum _{n=0}^{\infty }c_{n}x^{n-3}=x^{-3}\tag {3B}\end{equation}
The recursive relation for \(n>0\) is
\begin{align} \left ( n-3\right ) c_{n}x^{n-3}+c_{n}x^{n-3} & =0\nonumber \\ \left ( n-2\right ) c_{n}x^{n-3} & =0\tag {3C}\end{align}
We see that for all \(n>0\) then \(\left ( n-2\right ) c_{n}=0\) or \(c_{n}=0\) for all \(n>0\). Hence \(y_{p_{3}}\) that corresponds to \(x^{-3}\) is
\begin{align*} y_{p} & =\sum _{n=0}^{\infty }c_{n}x^{n+r}=\sum _{n=0}^{\infty }c_{n}x^{n-3}\\ & =c_{0}x^{-3}\\ & =-\frac {1}{2}x^{-3}\end{align*}
Hence the solution is
\begin{align*} y & =y_{h}+y_{p}\\ & =\frac {a_{0}}{x}-\frac {1}{2x^{3}}\end{align*}