2.3.2.0 Example 5. \(xy^{\prime \prime }+2y^{\prime }+xy=0,y\left ( 0\right ) =1,y^{\prime }\left ( 0\right ) =0\)
Solve
\begin{align} xy^{\prime \prime }+2y^{\prime }+xy & =0\tag {1}\\ y\left ( 0\right ) & =1\nonumber \\ y^{\prime }\left ( 0\right ) & =0 \end{align}
Using power series method by expanding around \(x=0\). We see that \(x=0\) is a regular singular point. In this case the Frobenius power series will be used instead of the standard power series. Let
\[ y\left ( x\right ) =\sum _{n=0}^{\infty }a_{n}x^{n+r}\]
Where \(r\) is to be determined. It is the root of the indicial equation. Therefore
\begin{align*} y^{\prime } & =\sum _{n=0}^{\infty }\left ( n+r\right ) a_{n}x^{n+r-1}\\ y^{\prime \prime } & =\sum _{n=0}^{\infty }\left ( n+r\right ) \left ( n+r-1\right ) a_{n}x^{n+r-2}\end{align*}
Substituting the above in (1) gives
\begin{align} x\sum _{n=0}^{\infty }\left ( n+r\right ) \left ( n+r-1\right ) a_{n}x^{n+r-2}+2\sum _{n=0}^{\infty }\left ( n+r\right ) a_{n}x^{n+r-1}+x\sum _{n=0}^{\infty }a_{n}x^{n+r} & =0\nonumber \\ \sum _{n=0}^{\infty }\left ( n+r\right ) \left ( n+r-1\right ) a_{n}x^{n+r-1}+\sum _{n=0}^{\infty }2\left ( n+r\right ) a_{n}x^{n+r-1}+\sum _{n=0}^{\infty }a_{n}x^{n+r+1} & =0 \tag {1A}\end{align}
Here, we need to make all powers on \(x\) the same, without making the sums start below zero. This can be done by adjusting the last term above as follows
\begin{equation} \sum _{n=0}^{\infty }\left ( n+r\right ) \left ( n+r-1\right ) a_{n}x^{n+r-1}+\sum _{n=0}^{\infty }2\left ( n+r\right ) a_{n}x^{n+r-1}+\sum _{n=2}^{\infty }a_{n-2}x^{n+r-1}=0 \tag {2}\end{equation}
Indicial equation is found from \(n=0\) which gives
\begin{align*} r\left ( r-1\right ) a_{0}+2ra_{0} & =0\\ \left ( r^{2}+r\right ) a_{0} & =0 \end{align*}
Since \(a_{0}\neq 0\) then \(r=0\) or \(r=-1\). Roots differ by integer. Let \(r_{1}=0,r_{2}=-1\), hence the solutions are
\begin{align*} y_{1} & =\sum _{n=0}^{\infty }a_{n}x^{n+r_{1}}\\ & =\sum _{n=0}^{\infty }a_{n}x^{n}\\ y_{2} & =Cy_{1}\ln \left ( x\right ) +\sum _{n=0}^{\infty }b_{n}x^{n+r}\\ & =Cy_{1}\ln \left ( x\right ) +\sum _{n=0}^{\infty }b_{n}x^{n-1}\end{align*}
We do not know yet if \(C\) will be zero or not (it will be). We have to wait after finding \(y_{1}\) and finding all \(a_{n}\) to find this. \(N=1\) in this case, (which is difference between roots). So it depends if \(\lim _{r\rightarrow r_{2}}a_{1}\) if this is defined or not. Now we find \(y_{1}\). Using (2), for \(n=1\)
\[ \left ( 1+r\right ) \left ( r\right ) a_{1}+2\left ( 1+r\right ) a_{1}=0 \]
But \(r_{1}=0\), hence\(\ 2a_{1}=0\) or \(a_{1}=0\). We setup the table now to help find \(C\)
The table becomes
| | |
\(n\) |
\(a_{n}\left ( r\right ) \) |
\(a_{n}\left ( r=0\right ) \) |
| | |
\(0\) |
\(1\) | \(1\) |
| | |
\(1\) | \(0\) | \(0\) |
| | |
For \(n=2\) EQ. (2) gives
\begin{align*} \left ( 2+r\right ) \left ( 1+r\right ) a_{2}+2\left ( 2+r\right ) a_{2}+a_{0} & =0\\ a_{2} & =\frac {-a_{0}}{\left ( 2+r\right ) \left ( 1+r\right ) +2\left ( 2+r\right ) }\\ & =\frac {-1}{r^{2}+5r+6}\end{align*}
But \(r=0\) then
\[ a_{2}=\frac {-1}{6}\]
The table becomes
| | |
\(n\) |
\(a_{n}\left ( r\right ) \) |
\(a_{n}\left ( r=0\right ) \) |
| | |
\(0\) |
\(1\) |
\(1\) |
| | |
\(1\) |
\(0\) | \(0\) |
| | |
\(2\) | \(\frac {-1}{r^{2}+5r+6}\) | \(\frac {-1}{6}\) |
| | |
If we continue we will find that \(a_{3}=0,a_{4}=\frac {1}{120},a_{5}=0,\cdots \). Hence
\begin{align*} y_{1} & =\sum _{n=0}^{\infty }a_{n}x^{n}\\ & =a_{0}+a_{1}x+a_{2}x^{2}+a_{3}x^{3}+\cdots \\ & =1-\frac {1}{6}x^{2}+\frac {x^{4}}{120}+\cdots \end{align*}
Now that we found \(y_{1}\) we need to decide if \(C=0\) or not. Since \(N=1\) then we need
\[ \lim _{r\rightarrow r_{2}}a_{1}\left ( r\right ) \]
But \(a_{1}\left ( r\right ) =0\). Does not depend on \(r\) as we see from the above table. Hence \(\lim _{r\rightarrow -1}a_{1}\left ( r\right ) =0\). Since limit exist then \(C=0\). Hence
\begin{align*} y_{2} & =Cy_{1}\ln \left ( x\right ) +\sum _{n=0}^{\infty }b_{n}x^{n+r}\\ & =\sum _{n=0}^{\infty }b_{n}x^{n-1}\end{align*}
We skip \(n=0\) since that was used to find roots and let \(b_{0}=1\). To find all \(b_{n}\) we can use (2) but replace \(a_{n}\) by \(b_{n}\) and replace \(r\) by \(-1\) which gives
\begin{align*} \sum _{n=0}^{\infty }\left ( n+r\right ) \left ( n+r-1\right ) b_{n}x^{n-2}+\sum _{n=0}^{\infty }2\left ( n+r\right ) b_{n}x^{n-2}+\sum _{n=2}^{\infty }b_{n-2}x^{n-2} & =0\\ \sum _{n=0}^{\infty }\left ( n-1\right ) \left ( n-2\right ) b_{n}x^{n-2}+\sum _{n=0}^{\infty }2\left ( n-1\right ) b_{n}x^{n-2}+\sum _{n=2}^{\infty }b_{n-2}x^{n-2} & =0 \end{align*}
For \(n=1\)
\[ 0b_{1}=0 \]
Hence \(b_{1}\) can be any value. Let \(b_{1}=0\). Recusive relation for \(n\geq 2\) which becomes
\begin{align*} \left ( n-1\right ) \left ( n-2\right ) b_{n}+2\left ( n-1\right ) b_{n}+b_{n-2} & =0\\ b_{n} & =\frac {-b_{n-2}}{\left ( n-1\right ) \left ( n-2\right ) +2\left ( n-1\right ) }\end{align*}
For \(n=2\)
\begin{align*} b_{2} & =\frac {-b_{0}}{2}\\ & =-\frac {1}{2}\end{align*}
For \(n=3\)
\begin{align*} b_{3} & =\frac {-b_{1}}{\left ( 3-1\right ) \left ( 3-2\right ) +2\left ( 3-1\right ) }\\ & =0 \end{align*}
Since \(b_{1}=0\). For \(n=4\)
\begin{align*} b_{4} & =\frac {-b_{2}}{\left ( 4-1\right ) \left ( 4-2\right ) +2\left ( 4-1\right ) }\\ & =\frac {-\left ( -\frac {1}{2}\right ) }{\left ( 4-1\right ) \left ( 4-2\right ) +2\left ( 4-1\right ) }\\ & =\frac {1}{24}\end{align*}
And so on. We find that
\begin{align*} y_{2} & =\sum _{n=0}^{\infty }b_{n}x^{n-1}\\ & =\frac {1}{x}\sum _{n=0}^{\infty }b_{n}x^{n}\\ & =\frac {1}{x}\left ( b_{0}+b_{1}x+b_{2}x^{2}+b_{3}x^{3}+\cdots \right ) \\ & =\frac {1}{x}\left ( 1-\frac {1}{2}x^{2}+\frac {1}{24}x^{4}+\cdots \right ) \end{align*}
Hence the solution is
\begin{align} y & =c_{1}y_{1}+c_{2}y_{2}\nonumber \\ & =c_{1}\left ( 1-\frac {1}{6}x^{2}+\frac {x^{4}}{120}+\cdots \right ) +c_{2}\left ( \frac {1}{x}\left ( 1-\frac {1}{2}x^{2}+\frac {1}{24}x^{4}+\cdots \right ) \right ) \nonumber \\ & =c_{1}\left ( 1-\frac {1}{6}x^{2}+\frac {x^{4}}{120}+\cdots \right ) +c_{2}\left ( \frac {1}{x}-\frac {1}{2}x+\frac {1}{24}x^{3}+\cdots \right ) \tag {3}\end{align}
We now need to determine the \(c_{1},c_{2}\) from initial conditions \(y\left ( 0\right ) =1,y^{\prime }\left ( 0\right ) =0\). At \(x=0\) we have
\begin{align*} 1 & =c_{1}\lim _{x\rightarrow 0}\left ( 1-\frac {1}{6}x^{2}+\frac {x^{4}}{120}+\cdots \right ) +\lim _{x\rightarrow 0}c_{2}\left ( \frac {1}{x}-\frac {1}{2}x+\frac {1}{24}x^{3}+\cdots \right ) \\ & =c_{1}+c_{2}\lim _{x\rightarrow 0}\frac {1}{x}\end{align*}
So we need to have \(c_{2}=0\) since\(\ \lim _{x\rightarrow 0}\frac {1}{x}\) is undefined. Hence \(c_{1}=1\) and the solution now becomes
\[ y=1-\frac {1}{6}x^{2}+\frac {x^{4}}{120}+\cdots \]
Now we need to verify this solution satisfies the second IC \(y^{\prime }\left ( 0\right ) =0\). Taking derivative gives
\[ y^{\prime }=-\frac {1}{3}x+\frac {x^{3}}{30}+\cdots \]
At \(x=0\), the above gives \(y^{\prime }=0\). Satisfied. Hence the solution is
\[ y=1-\frac {1}{6}x^{2}+\frac {x^{4}}{120}+\cdots \]
Lets see what happens if the IC was just \(y^{\prime }\left ( 0\right ) =0\). Taking derivative of (3) gives
\[ y^{\prime }=c_{1}\left ( -\frac {1}{3}x+\frac {x^{3}}{30}+\cdots \right ) +c_{2}\left ( -\frac {1}{x^{2}}-\frac {1}{2}+\frac {3}{24}x^{2}+\cdots \right ) \]
At \(x=0\) the above gives
\[ 0=c_{1}\left ( 0\right ) +c_{2}\lim _{x\rightarrow 0}\left ( -\frac {1}{x^{2}}-\frac {1}{2}\right ) \]
Therefore we need to have \(c_{2}=0\) since no limit exist. We see that \(c_{1}\) can be any value. Hence the solution (3) becomes
\[ y=c_{1}\left ( 1-\frac {1}{6}x^{2}+\frac {x^{4}}{120}+\cdots \right ) \]
Lets see what happens if the IC was just \(y^{\prime }\left ( 0\right ) =A\) for \(A\neq 0\). Then taking derivative as above gives
\[ A=c_{1}\left ( 0\right ) +c_{2}\lim _{x\rightarrow 0}\left ( -\frac {1}{x^{2}}-\frac {1}{2}\right ) \]
Setting \(c_{2}=0\) gives
\[ A=0 \]
Which is contradiction. Therefore for the IC \(y^{\prime }\left ( 0\right ) =A\) there is no solution. Finally, lets see what happens when the IC is \(y\left ( 0\right ) =A\) for \(A\neq 0\). From (3)
\[ A=c_{1}\left ( 1\right ) +c_{2}\lim _{x\rightarrow 0}\left ( \frac {1}{x}\right ) \]
Since limit is not defined, we make \(c_{2}=0\) which means \(c_{1}=A\). And the
solution (3) becomes
\[ y=A\left ( 1-\frac {1}{6}x^{2}+\frac {x^{4}}{120}+\cdots \right ) \]
Let verify this satisfies the IC \(y\left ( 0\right ) =A\). We see it does. When \(x=0\) the above gives \(A=A\).