1.3.22 Example 22 \(y=xp^{2}-\frac {1}{p}\) (d’Alembert)
\[ x\left ( y^{\prime }\right ) ^{3}=yy^{\prime }+1 \]
Let
\(y^{\prime }=p\) and rearranging gives
\begin{align} xp^{3} & =yp+1\nonumber \\ y & =\frac {xp^{3}-1}{p}\nonumber \\ & =xp^{2}-\frac {1}{p}\nonumber \\ & =xf+g\tag {1}\end{align}
Hence
\begin{align*} f & =p^{2}\\ g & =-\frac {1}{p}\end{align*}
Since \(f\left ( p\right ) \neq p\) then this is d’Alembert ode. Taking derivative of (1) w.r.t. \(x\) gives
\begin{align*} p & =\frac {d}{dx}\left ( xf\left ( p\right ) +g\left ( p\right ) \right ) \\ & =f\left ( p\right ) +xf^{\prime }\left ( p\right ) \frac {dp}{dx}+g^{\prime }\left ( p\right ) \frac {dp}{dx}\\ & =f\left ( p\right ) +\left ( xf^{\prime }+g^{\prime }\right ) \frac {dp}{dx}\end{align*}
But \(f\left ( p\right ) =p^{2},f^{\prime }\left ( p\right ) =2p,g=-\frac {1}{p},g^{\prime }=\frac {1}{p^{2}}\) and the above becomes
\begin{align} p & =p^{2}+\left ( 2xp+\frac {1}{p^{2}}\right ) \frac {dp}{dx}\nonumber \\ p-p^{2} & =\left ( 2xp+\frac {1}{p^{2}}\right ) \frac {dp}{dx}\tag {2}\end{align}
The singular solution is found by setting \(\frac {dp}{dx}=0\) which results in \(p-p^{2}=0\). Hence \(p=0\) or \(p=1\). Substituting \(p=0\) in (1)
gives 1/0 error. Hence this is not valid solution. Substituting \(p=1\) in (1) gives \(y=x-1\) which verifies
the ode. Hence this is valid singular solution.
The general solution is when \(\frac {dp}{dx}\neq 0\) in (2). This gives the ode
\[ \frac {dp}{dx}=\frac {p^{3}\left ( 1-p\right ) }{2xp^{3}+1}\]
But this is non-linear in
\(p\). Hence
inversion is needed. This becomes
\[ \frac {dx}{dp}=\frac {2xp^{3}+1}{p^{3}\left ( 1-p\right ) }\]
Which is now linear in
\(x\left ( p\right ) \). The solution is
\begin{equation} x=\frac {2c_{1}p^{2}+2p-1}{2p^{2}\left ( p-1\right ) ^{2}} \tag {3}\end{equation}
We now need
to eliminate
\(p\). We have two equations to do that, (1) and (3). Here they are side by
side
\begin{align} y & =xp^{2}-\frac {1}{p}\tag {1}\\ x & =\frac {2c_{1}p^{2}+2p-1}{2p^{2}\left ( p-1\right ) ^{2}} \tag {3}\end{align}
We can either solve for \(p\) from (1) and plugin in the value found into (3). Or we can solve
for \(p\) from (3) and plugin the value found in (1). Using CAS we can just use the solve
command. For an example, using Maple it gives
eq1:=y=x*p^2-1/p;
eq2:=x= (2*_C1*p^2+2*p-1)/(2*p^2*(p-1)^2);
solve({eq1,eq2},{y,p})
Whch gives
{p = RootOf(1 + 2*x*_Z^4 - 4*x*_Z^3 + (-2*c__1 + 2*x)*_Z^2 - 2*_Z),
y = (x*RootOf(1 + 2*x*_Z^4 - 4*x*_Z^3 + (-2*c__1 + 2*x)*_Z^2 - 2*_Z)^3 - 1)/RootOf(1 + 2*x*_Z^4 - 4*x*_Z^3 + (-2*c__1 + 2*x)*_Z^2 - 2*_Z)}
Hence the general solution is
\[ y=\frac {x\operatorname {RootOf}\left ( 1+2xZ^{4}-4xZ^{3}+\left ( -2c_{1}+2x\right ) Z^{2}-2Z\right ) ^{3}-1}{\operatorname {RootOf}\left ( 1+2xZ^{4}-4xZ^{3}+\left ( -2c_{1}+2x\right ) Z^{2}-2Z\right ) }\]
And the singular solution is
\[ y=x-1 \]