5.3.2.12 Example 12
Let
\begin{align} y^{\prime \prime }+\frac {x^{2}-1}{x}y^{\prime }+x^{2}y & =0\tag {1}\\ y^{\prime \prime }+ay^{\prime }\left ( x\right ) +by & =0\nonumber \end{align}
Hence
\begin{align*} a & =\frac {x^{2}-1}{x}\\ b & =x^{2}\end{align*}
It is first transformed to the following ode by eliminating the first derivative
\begin{equation} z^{\prime \prime }=rz \tag {2}\end{equation}
Using what
is known as the Liouville transformation given by
\begin{equation} y=ze^{\frac {-1}{2}\int adx} \tag {3}\end{equation}
Where it can be found that
\(r\) in (2) is
given by
\begin{align} r & =\frac {1}{4}a^{2}+\frac {1}{2}a^{\prime }-b\nonumber \\ & =\frac {1}{4}\left ( \frac {x^{2}-1}{x}\right ) ^{2}+\frac {1}{2}\frac {d}{dx}\left ( \frac {x^{2}-1}{x}\right ) -x^{2}\nonumber \\ & =-\frac {3\left ( x^{4}-1\right ) }{4x^{2}} \tag {4}\end{align}
Hence the DE we will solve using Kovacic algorithm is Eq (2) which is
\begin{equation} z^{\prime \prime }=-\frac {3\left ( x^{4}-1\right ) }{4x^{2}}z \tag {5}\end{equation}
Therefore
\begin{align} r & =\frac {s}{t}\nonumber \\ & =\frac {-3\left ( x^{4}-1\right ) }{4x^{2}}\nonumber \end{align}
The necessary conditions for case 1 are met.
Step 1 In this we find all \(\left [ \sqrt {r}\right ] _{c}\) and associated \(\alpha _{c}^{\pm }\) for each pole. There is one pole at \(x=0\) of order 2.
Hence
\begin{align*} \left [ \sqrt {r}\right ] _{c_{1}} & =0\\ \alpha _{c_{1}}^{+} & =\frac {1}{2}+\frac {1}{2}\sqrt {1+4b}\\ \alpha _{c_{1}}^{-} & =\frac {1}{2}-\frac {1}{2}\sqrt {1+4b}\end{align*}
Where \(b\) is the coefficient of \(\frac {1}{\left ( x-0\right ) ^{2}}\) in the partial fraction decomposition of \(r\) which is (in Maple
this can be found using fullparfrac).
\begin{equation} \frac {-3\left ( x^{4}-1\right ) }{4x^{2}}=-\frac {3}{4}x^{2}+\frac {3}{4}\frac {1}{x^{2}} \tag {6}\end{equation}
Hence
\(b=\frac {3}{4}\). Therefore
\begin{align*} \left [ \sqrt {r}\right ] _{c_{1}} & =0\\ \alpha _{c_{1}}^{+} & =\frac {1}{2}+\frac {1}{2}\sqrt {1+4\left ( \frac {3}{4}\right ) }=\frac {3}{2}\\ \alpha _{c_{1}}^{-} & =\frac {1}{2}-\frac {1}{2}\sqrt {1+4\left ( \frac {3}{4}\right ) }=-\frac {1}{2}\end{align*}
Now we consider \(O\left ( \infty \right ) \) which is \(\deg \left ( t\right ) -\deg \left ( s\right ) =2-4=-2\). We are in case \(2v\leq 0\). Hence \(-2v=-2\) or
\[ v=1 \]
Then now
\(\left [ \sqrt {r}\right ] _{\infty }\) is the sum of all terms
\(x^{i}\)
for
\(0\leq i\leq v\) in the Laurent series expansion of
\(\sqrt {r}\) at
\(\infty \) which is
\begin{equation} \left [ \sqrt {r}\right ] _{\infty }=\frac {i\sqrt {3}}{2}x-\frac {i\sqrt {3}}{4}\frac {1}{x^{3}}+\cdots \tag {7}\end{equation}
We want only terms for
\(0\leq i\leq v\) but
\(v=1\).
Therefore need to sum terms
\(x^{0},x^{1}\). From the above we see that
\[ \left [ \sqrt {r}\right ] _{\infty }=\frac {i\sqrt {3}}{2}x \]
Which means
\[ a=\frac {i\sqrt {3}}{2}\]
As it is the the
term that matches
\(\left [ \sqrt {r}\right ] _{\infty }=ax\).
\(\ \) Now we need to find
\(b\). This will be the coefficient of
\(x^{v-1}=x^{0}\) in
\(r\) minus the
coefficient of
\(x^{0}\) in
\(\left ( \left [ \sqrt {r}\right ] _{\infty }\right ) ^{2}\). But
\begin{align*} \left ( \left [ \sqrt {r}\right ] _{\infty }\right ) ^{2} & =\left ( \frac {i\sqrt {3}}{2}x\right ) ^{2}\\ & =-\frac {3}{4}x^{2}\end{align*}
Hence the coefficient is zero here. Now we find coefficient of \(x^{0}\) in \(r\). Since \(r=-\frac {3}{4}x^{2}+\frac {3}{4}\frac {1}{x^{2}}\) then coefficient of \(x^{0}\)
is zero also. Hence \(b=0-0=0\). Therefore
\begin{align*} \alpha _{\infty }^{+} & =\frac {1}{2}\left ( \frac {b}{a}-v\right ) =\frac {1}{2}\left ( 0-1\right ) =-\frac {1}{2}\\ \alpha _{\infty }^{-} & =\frac {1}{2}\left ( -\frac {b}{a}-v\right ) =\frac {1}{2}\left ( 0-1\right ) =-\frac {1}{2}\end{align*}
This completes step 1 of the solution. We have found \(\left [ \sqrt {r}\right ] _{c}\) and its associated \(\alpha _{c}^{\pm }\) and found \(\left [ \sqrt {r}\right ] _{\infty }\) and
its associated \(\alpha _{\infty }^{\pm }\). Now we go to step 2 which is to find the \(d^{\prime }s\).
step 2 Now \(d\) is found using
\[ d=\alpha _{\infty }^{\pm }-\sum _{i=1}^{0}\alpha _{c_{i}}^{\pm }\]
By trying all possible combinations. There are 4 possible
\(d\)
values. This gives
\begin{align*} d_{1} & =\alpha _{\infty }^{+}-\left ( \alpha _{c_{1}}^{+}\right ) =-\frac {1}{2}-\frac {3}{2}=-1\\ d_{2} & =\alpha _{\infty }^{+}-\left ( \alpha _{c_{1}}^{-}\right ) =-\frac {1}{2}-\left ( -\frac {1}{2}\right ) =0\\ d_{3} & =\alpha _{\infty }^{-}-\left ( \alpha _{c_{1}}^{+}\right ) =-\frac {1}{2}-\frac {3}{2}=-2\\ d_{4} & =\alpha _{\infty }^{-}-\left ( \alpha _{c_{1}}^{-}\right ) =-\frac {1}{2}-\left ( -\frac {1}{2}\right ) =0 \end{align*}
Using first \(d=0\) entry above now we find \(\omega \) using
\[ \omega =\left ( \sum _{c}s\left ( c\right ) \left [ \sqrt {r}\right ] _{c}+\frac {\alpha _{c}^{s\left ( c\right ) }}{x-c}\right ) +s\left ( \infty \right ) \left [ \sqrt {r}\right ] _{\infty }\]
Hence
\[ \omega =\left ( -1\right ) \left ( 0\right ) +\frac {-\frac {1}{2}}{x-0}+\left ( +\right ) \left ( \frac {i\sqrt {3}}{2}x\right ) =\frac {-1}{2x}+\frac {i\sqrt {3}}{2}x \]
Notice that if have taken the last
\(d=0\) entry,
we will get
\[ \omega =\left ( -1\right ) \left ( 0\right ) +\frac {-\frac {1}{2}}{x-0}+\left ( -\right ) \left ( \frac {i\sqrt {3}}{2}x\right ) =\frac {-1}{2x}-\frac {i\sqrt {3}}{2}x \]
In practice, we will try the second one if the first fails. Will finish the solution
next.