5.2.1 Missing \(x\)

5.2.1.1 Example 1 \(y^{\prime }y^{\prime \prime \prime }+\left ( y^{\prime }\right ) ^{2}=2\left ( y^{\prime \prime }\right ) ^{2}\)

ode internal name "higher_order_ODE_missing_x"

If the ode which is missing \(x\) then the substitution \(y^{\prime }=u,y^{\prime \prime }=u\frac {du}{dy},y^{\prime \prime \prime }=u^{2}\frac {d^{2}u}{dy^{2}}+u\left ( \frac {du}{dy}\right ) ^{2}\) and so on is used to reduced the order by one. This works for linear and nonlinear ode.