4.9.1.1.14 Example 14 \(y^{\prime \prime }=-e^{-2y}=0,y\left ( 3\right ) =0,y^{\prime }\left ( 3\right ) =-1\)
\begin{equation} y^{\prime \prime }=-e^{-2y}=0\tag {1}\end{equation}
With IC
\begin{align*} y\left ( 3\right ) & =0\\ y^{\prime }\left ( 3\right ) & =-1 \end{align*}
This is same problem as above but with different IC. Let \(p=y^{\prime }\) then \(y^{\prime \prime }=p\frac {dp}{dy}\). Hence the ode becomes
\begin{equation} p\frac {dp}{dy}=-e^{-2y}\nonumber \end{equation}
This is separable.
\begin{align} \int pdp & =-\int e^{-2y}dy\nonumber \\ \frac {p^{2}}{2} & =\frac {1}{2}e^{-2y}+c_{1}\nonumber \\ p^{2} & =e^{-2y}+c_{2}\tag {3}\end{align}
Hence
\begin{align*} p_{1} & =\sqrt {e^{-2y}+c_{2}}\\ p_{2} & =-\sqrt {e^{-2y}+c_{2}}\end{align*}
Before solving this, we should apply IC now as it simplifies the solution greatly. This
assumes both \(y,y^{\prime }\) are are given at same point \(x_{0}\). Which is the case here. If only one IC is given
(such as \(y\left ( 0\right ) \) or \(y^{\prime }\left ( 0\right ) \) but not both, then we can not apply IC now and have to do it at the
end).
We are given that \(y^{\prime }\left ( 3\right ) =p=-1,y\left ( 3\right ) =0\), hence the IC becomes \(p\left ( 0\right ) =-1\).
\[ -1=\sqrt {1+c_{2}}\]
No solution. For second root
\begin{align*} -1 & =-\sqrt {1+c_{2}}\\ 1 & =\sqrt {1+c_{2}}\\ 1 & =1+c_{2}\\ c_{2} & =0 \end{align*}
Hence the solution is
\begin{align*} p_{2} & =-\sqrt {e^{-2y}}\\ p_{2} & =-e^{-y}\end{align*}
but \(p=y^{\prime }\) hence the above becomes
\[ y^{\prime }=-e^{-y}\]
This is quadrature. Solving gives
\[ y=\ln \left ( -x-c_{1}\right ) \]
Applying IC For
\(y\left ( 3\right ) =0\)
gives
\begin{align*} 0 & =\ln \left ( -3-c_{1}\right ) \\ -3-c_{1} & =1\\ c_{1} & =-4 \end{align*}
Hence solution is
\[ y=\ln \left ( -x+4\right ) \]