4.14.32 \(\left (a^2 x+y(x) \left (x^2-y(x)^2\right )\right ) y'(x)+x \left (x^2-y(x)^2\right )=a^2 y(x)\)

ODE
\[ \left (a^2 x+y(x) \left (x^2-y(x)^2\right )\right ) y'(x)+x \left (x^2-y(x)^2\right )=a^2 y(x) \] ODE Classification

[_rational]

Book solution method
Change of Variable, Two new variables

Mathematica
cpu = 0.126636 (sec), leaf count = 37

\[\text {Solve}\left [a^2 \log (y(x)+x)+x^2+y(x)^2=a^2 \log (x-y(x))+2 c_1,y(x)\right ]\]

Maple
cpu = 0.016 (sec), leaf count = 0 , exception

numeric exception: division by zero

Mathematica raw input

DSolve[x*(x^2 - y[x]^2) + (a^2*x + y[x]*(x^2 - y[x]^2))*y'[x] == a^2*y[x],y[x],x]

Mathematica raw output

Solve[x^2 + a^2*Log[x + y[x]] + y[x]^2 == 2*C[1] + a^2*Log[x - y[x]], y[x]]

Maple raw input

dsolve((a^2*x+(x^2-y(x)^2)*y(x))*diff(y(x),x)+x*(x^2-y(x)^2) = a^2*y(x), y(x),'implicit')

Maple raw output

numeric exception: division by zero