ODE
\[ 2 x \left (5 x^2+y(x)^2\right ) y'(x)=x^2 y(x)-y(x)^3 \] ODE Classification
[[_homogeneous, `class A`], _rational, _dAlembert]
Book solution method
Homogeneous equation
Mathematica ✓
cpu = 0.0608681 (sec), leaf count = 216
\[\left \{\left \{y(x)\to \text {Root}\left [-\text {$\#$1}^5+\frac {\text {$\#$1}^2 e^{3 c_1}}{x^{3/2}}+3 e^{3 c_1} \sqrt {x}\& ,1\right ]\right \},\left \{y(x)\to \text {Root}\left [-\text {$\#$1}^5+\frac {\text {$\#$1}^2 e^{3 c_1}}{x^{3/2}}+3 e^{3 c_1} \sqrt {x}\& ,2\right ]\right \},\left \{y(x)\to \text {Root}\left [-\text {$\#$1}^5+\frac {\text {$\#$1}^2 e^{3 c_1}}{x^{3/2}}+3 e^{3 c_1} \sqrt {x}\& ,3\right ]\right \},\left \{y(x)\to \text {Root}\left [-\text {$\#$1}^5+\frac {\text {$\#$1}^2 e^{3 c_1}}{x^{3/2}}+3 e^{3 c_1} \sqrt {x}\& ,4\right ]\right \},\left \{y(x)\to \text {Root}\left [-\text {$\#$1}^5+\frac {\text {$\#$1}^2 e^{3 c_1}}{x^{3/2}}+3 e^{3 c_1} \sqrt {x}\& ,5\right ]\right \}\right \}\]
Maple ✓
cpu = 0.021 (sec), leaf count = 37
\[ \left \{ {\frac {2}{9}\ln \left ( {\frac {3\,{x}^{2}+ \left ( y \left ( x \right ) \right ) ^{2}}{{x}^{2}}} \right ) }-{\frac {10}{9}\ln \left ( {\frac {y \left ( x \right ) }{x}} \right ) }-\ln \left ( x \right ) -{\it \_C1}=0 \right \} \] Mathematica raw input
DSolve[2*x*(5*x^2 + y[x]^2)*y'[x] == x^2*y[x] - y[x]^3,y[x],x]
Mathematica raw output
{{y[x] -> Root[3*E^(3*C[1])*Sqrt[x] + (E^(3*C[1])*#1^2)/x^(3/2) - #1^5 & , 1]},
{y[x] -> Root[3*E^(3*C[1])*Sqrt[x] + (E^(3*C[1])*#1^2)/x^(3/2) - #1^5 & , 2]}, {
y[x] -> Root[3*E^(3*C[1])*Sqrt[x] + (E^(3*C[1])*#1^2)/x^(3/2) - #1^5 & , 3]}, {y
[x] -> Root[3*E^(3*C[1])*Sqrt[x] + (E^(3*C[1])*#1^2)/x^(3/2) - #1^5 & , 4]}, {y[
x] -> Root[3*E^(3*C[1])*Sqrt[x] + (E^(3*C[1])*#1^2)/x^(3/2) - #1^5 & , 5]}}
Maple raw input
dsolve(2*x*(5*x^2+y(x)^2)*diff(y(x),x) = x^2*y(x)-y(x)^3, y(x),'implicit')
Maple raw output
2/9*ln((3*x^2+y(x)^2)/x^2)-10/9*ln(y(x)/x)-ln(x)-_C1 = 0