4.31.20 \(a+\left (x^2+1\right ) y''(x)-x y'(x)=0\)

ODE
\[ a+\left (x^2+1\right ) y''(x)-x y'(x)=0 \] ODE Classification

[[_2nd_order, _missing_y]]

Book solution method
TO DO

Mathematica
cpu = 0.0477726 (sec), leaf count = 38

\[\left \{\left \{y(x)\to \frac {1}{2} \left (-a x^2+c_1 \sqrt {x^2+1} x+c_1 \sinh ^{-1}(x)+2 c_2\right )\right \}\right \}\]

Maple
cpu = 0.029 (sec), leaf count = 28

\[ \left \{ y \left ( x \right ) ={\frac {{\it \_C1}\,x}{2}\sqrt {{x}^{2}+1}}+{\frac {{\it \_C1}\,{\it Arcsinh} \left ( x \right ) }{2}}-{\frac {a{x}^{2}}{2}}+{\it \_C2} \right \} \] Mathematica raw input

DSolve[a - x*y'[x] + (1 + x^2)*y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> (-(a*x^2) + x*Sqrt[1 + x^2]*C[1] + ArcSinh[x]*C[1] + 2*C[2])/2}}

Maple raw input

dsolve((x^2+1)*diff(diff(y(x),x),x)-x*diff(y(x),x)+a = 0, y(x),'implicit')

Maple raw output

y(x) = 1/2*_C1*x*(x^2+1)^(1/2)+1/2*_C1*arcsinh(x)-1/2*a*x^2+_C2