4.24.32 \(y''(x)+y(x)=a x\)

ODE
\[ y''(x)+y(x)=a x \] ODE Classification

[[_2nd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.00327922 (sec), leaf count = 19

\[\left \{\left \{y(x)\to a x+c_2 \sin (x)+c_1 \cos (x)\right \}\right \}\]

Maple
cpu = 0.204 (sec), leaf count = 16

\[ \left \{ y \left ( x \right ) =\sin \left ( x \right ) {\it \_C2}+\cos \left ( x \right ) {\it \_C1}+ax \right \} \] Mathematica raw input

DSolve[y[x] + y''[x] == a*x,y[x],x]

Mathematica raw output

{{y[x] -> a*x + C[1]*Cos[x] + C[2]*Sin[x]}}

Maple raw input

dsolve(diff(diff(y(x),x),x)+y(x) = a*x, y(x),'implicit')

Maple raw output

y(x) = sin(x)*_C2+cos(x)*_C1+a*x