4.21.43 \(-x y(x)^4 y'(x)+y'(x)^3-y(x)^5=0\)

ODE
\[ -x y(x)^4 y'(x)+y'(x)^3-y(x)^5=0 \] ODE Classification

[[_1st_order, _with_linear_symmetries]]

Book solution method
No Missing Variables ODE, Solve for \(x\)

Mathematica
cpu = 600.002 (sec), leaf count = 0 , timed out

$Aborted

Maple
cpu = 0.88 (sec), leaf count = 42

\[ \left \{ \left ( y \left ( x \right ) \right ) ^{2}-{\frac {27}{4\,{x}^{3}}}=0,[x \left ( {\it \_T} \right ) ={\frac {1}{{\it \_T}\,{{\it \_C1}}^{4}} \left ( -{{\it \_C1}}^{5}\sqrt {{\it \_T}}+{\it \_T} \right ) },y \left ( {\it \_T} \right ) ={\it \_C1}\,\sqrt {{\it \_T}}] \right \} \] Mathematica raw input

DSolve[-y[x]^5 - x*y[x]^4*y'[x] + y'[x]^3 == 0,y[x],x]

Mathematica raw output

$Aborted

Maple raw input

dsolve(diff(y(x),x)^3-x*y(x)^4*diff(y(x),x)-y(x)^5 = 0, y(x),'implicit')

Maple raw output

y(x)^2-27/4/x^3 = 0, [x(_T) = (-_C1^5*_T^(1/2)+_T)/_T/_C1^4, y(_T) = _C1*_T^(1/2
)]